skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Triple oxygen isotope compositions of globally distributed soil carbonates record widespread evaporation of soil waters
Award ID(s):
1854873 1725621 2122023
PAR ID:
10432605
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geochimica et Cosmochimica Acta
Volume:
355
Issue:
C
ISSN:
0016-7037
Page Range / eLocation ID:
138 to 160
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Warmer winters with less snowfall are increasing the frequency of soil freeze–thaw cycles across temperate regions. Soil microbial responses to freeze–thaw cycles vary and some of this variation may be explained by microbial conditioning to prior winter conditions, yet such linkages remain largely unexplored. We investigated how differences in temperature history influenced microbial community composition and activity in response to freeze–thaw cycles.We collected soil microbial communities that developed under colder (high elevation) and warmer (low elevation) temperature regimes in spruce‐fir forests, then added each of these soil microbial communities to a sterile bulk‐soil in a laboratory microcosm experiment. The inoculated high‐elevation cold and low‐elevation warm microcosms were subjected to diurnal freeze–thaw cycles or constant above‐freezing temperature for 9 days. Then, all microcosms were subjected to a 7‐day above‐freezing recovery period.Overall, we found that the high‐elevation cold community had, relative to the low‐elevation warm community, a smaller reduction in microbial respiration (CO2flux) during freeze–thaw cycles. Further, the high‐elevation cold community, on average, experienced lower freeze–thaw‐induced bacterial mortality than the warm community and may have partly acclimated to freeze–thaw cycles via increased lipid membrane fluidity. Respiration of both microbial communities quickly recovered following the end of the freeze–thaw treatment period and there were no changes in soil extractable carbon or nitrogen.Our results provide evidence that past soil temperature conditions may influence the responses of soil microbial communities to freeze–thaw cycles. The microbial community that developed under a colder temperature regime was more tolerant of freeze–thaw cycles than the community that developed under a warmer temperature regime, although both communities displayed some level of resilience. Taken together, our data suggest that microbial communities conditioned to less extreme winter soil temperatures may be most vulnerable to rapid changes in freeze–thaw regimes as winters warm, but they also may be able to quickly recover if mortality is low. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  2. Soil mesofauna play pertinent roles in soil processes. For example, microarthropods strongly influence rates of microbial decomposition. The relationship between mesofauna and their environment are understudied in low Arctic ecosystems compared to other regions. A more detailed grasp of these soil assemblages is necessary for understanding the current functioning of these ecosystems. We characterized the soil mesofauna community across different low Arctic habitats to determine which soil properties commonly correlated with soil fauna would best explain their distribution, abundance, and diversity. Samples were taken near five different lakes in northern Finland, in both alpine meadows and sub-alpine birch forests, across a span of available soil habitats (measured by pH, salinity, organic and nitrogen content, soil moisture). Total abundance of the mesofauna community was influenced by a combination of soil factors, but most individual taxa, as well as measures of diversity were best explained by models of one or two influential soil parameters. Poduromorpha springtails and Oribatid mites were best modeled by measures of resource availability, although only Oribatids were significantly, positively related to these resources. All mites and Entomobryomorphid springtails were positively influenced by physicochemical soil moisture and/or salinity. Salinity, in particular, had a strong influence on overall mesofauna community composition. Our results provide further insight into soil fauna assemblages in Northern Finland and further, more extensive research would contribute to a more comprehensive foundation. This will allow for better monitoring of community changes and responses in the face of climate change in the low Arctic. 
    more » « less
  3. Microbes can promote beneficial plant and animal responses to abiotic environments, but the ecological drivers of this benefit remain elusive. Here we investigated byproduct benefits, which occur when traits that increase the fitness of one species provide incidental benefits to another species with no direct cost to the provider species. In experimental mesocosms, microbial traits predicted plant responses to soil moisture such that bacteria with self-beneficial traits in drought increased plant early growth, size at reproduction, and chlorophyll concentration under drought, while bacteria with self-beneficial traits in well-watered environments increased these same plant traits in well-watered environments. Thus, microbial traits that promote microbial success in different soil moisture environments also promote plant success in these same environments. Our results show that the concept of byproduct benefits, originally conceived to explain the evolution of cooperation in pairwise mutualisms, also applies to interactions between plants and non-symbiotic soil microbes. Descriptions of the data can be found in the README_Bolin_Lennon_Lau_2022.txt file. 
    more » « less