Irradiation of the major conformation of duplex DNA found in cells (B form) produces cyclobutane pyrimidine dimers (CPDs) from adjacent pyrimidines in a head-to-head orientation (syn) with the C5 substituents in a cis stereochemistry. These CPDs have crucial implications in skin cancer. Irradiation of G-quadruplexes and other non-B DNA conformations in vitro produces, however, CPDs between non-adjacent pyrimidines in nearby loops with syn and head-to-tail orientations (anti) with both cis and trans stereochemistry to yield a mixture of six possible isomers of the T=T dimer. This outcome is further complicated by formation of mixtures of non-adjacent CPDs of dC=dT, dT=dC, and dC=dC, and successful analysis depends on development of specific and sensitive methods. Towards meeting this need, we investigated whether ion mobility mass spectrometry (IMMS) and MS/MS can distinguish the cis,syn and trans-anti T=T CPDs. Ion mobility can afford base-line separation and give relative mobilities that are in accord with predicted cross sections. Complementing this ability to distinguish isomers is MS/MS collisional activation where fragmentation also distinguishes the two isomers and confirms conclusions drawn from ion mobility analysis. The observations offer early support that ion mobility and MS/MS can enable the distinction of DNA photoproduct isomers.
more »
« less
Post- and Pre-Radiolabeling Assays for anti Thymidine Cyclobutane Dimers as Intrinsic Photoprobes of Various Types of G-Quadruplexes, Reverse Hoogsteen Hairpins, and Other Non-B DNA Structures
G-quadruplexes are thought to play an important role in gene regulation and telomere maintenance, but developing probes for their presence and location is challenging due to their transitory and highly dynamic nature. The majority of probes for G-quadruplexes have relied on antibody or small-molecule binding agents, many of which can also alter the dynamics and relative populations of G-quadruplexes. Recently, it was discovered that ultraviolet B (UVB) irradiation of human telomeric DNA and various G-quadruplex forming sequences found in human promoters, as well as reverse Hoogsteen hairpins, produces a unique class of non-adjacent anti cyclobutane pyrimidine dimers (CPDs). Therefore, one can envision using a pulse of UVB light to irreversibly trap these non-B DNA structures via anti CPD formation without perturbing their dynamics, after which the anti CPDs can be identified and mapped. As a first step toward this goal, we report radioactive post- and pre-labeling assays for the detection of non-adjacent CPDs and illustrate their use in detecting trans,anti T=(T) CPD formation in a human telomeric DNA sequence. Both assays make use of snake venom phosphodiesterase (SVP) to degrade the trans,anti T=(T) CPD-containing DNA to the tetranucleotide pTT=(pTT) corresponding to CPD formation between the underlined T's of two separate dinucleotides while degrading the adjacent syn TT CPDs to the trinucleotide pGT=T. In the post-labeling assay, calf intestinal phosphodiesterase is used to dephosphorylate the tetranucleotides, which are then rephosphorylated with kinase and [32P]-ATP to produce radiolabeled mono- and diphosphorylated tetranucleotides. The tetranucleotides are confirmed to be non-adjacent CPDs by 254 nm photoreversion to the dinucleotide p*TT. In the pre-labeling assay, radiolabeled phosphates are introduced into non-adjacent CPD-forming sites by ligation prior to irradiation, thereby eliminating the dephosphorylation and rephosphorylation steps. The assays are also demonstrated to detect the stereoisomeric cis,anti T=(T) CPD.
more »
« less
- Award ID(s):
- 2003688
- PAR ID:
- 10432653
- Date Published:
- Journal Name:
- Biochemistry
- ISSN:
- 0006-2960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Photochemical dimerization of adjacent pyrimidines is fundamental to the creation of mutagenic hotspots caused by ultraviolet light. Distribution of the resulting lesions (cyclobutane pyrimidine dimers, CPDs) is already known to be highly variable in cells, and in vitro models have implicated DNA conformation as a major basis for this observation. Past efforts have primarily focused on mechanisms that influence CPD formation and have rarely considered contributions of CPD reversion. However, reversion is competitive under the standard conditions of 254 nm irradiation as illustrated in this report based on the dynamic response of CPDs to changes in DNA conformation. A periodic profile of CPDs was recreated in DNA held in a bent conformation by λ repressor. After linearization of this DNA, the CPD profile relaxed to its characteristic uniform distribution over a similar time of irradiation to that required to generate the initial profile. Similarly, when a T tract was released from a bent conformation, its CPD profile converted under further irradiation to that consistent with a linear T tract. This interconversion of CPDs indicates that both its formation and reversion exert control on CPD populations long before photo-steady-state conditions are achieved and suggests that the dominant sites of CPDs will evolve as DNA conformation changes in response to natural cellular processes.more » « less
-
G-quadruplexes (GQs), spatial assemblies of guanine-rich DNA strands, play an important role in the regulation of gene expression and chromosome stabilization. These structures are recognized to be useful in cancer therapies as the presence of multiple G-quadruplexes in a telomeric strand stops cancer cell proliferation. Metallacrowns of the type 12-MC-4 form planar structures that have remarkable similarity to G-tetrads in terms of dimension, shape and the ability to bind alkali metal and lanthanide cations in a central cavity. The interaction between the Sm( iii )[12-MC Ga(III)shi -4] (SmMC) metallacrown (MC) and human telomeric G-quadruplex structures was examined using several methods including CD titrations, CD melting temperatures, fluorescence titration of SmMC with GQ/Na + , fluorescence intercalator displacement (FID) assays and methods measuring the MC quenching effect on the Tb 3+ /GQ luminescence. It was proven that the studied metallacrown acted as a sensing probe and interacted with quadruplex DNA. The Stern–Volmer quenching constant ( K as ) of Tb 3+ /GQ luminescence was calculated to be 3.9 × 10 5 M −1 . The binding constant using the indirect FID method gave the result of 1.3 × 10 5 M −1 . CD melting temperature experiments reveal the following pattern – the higher the concentration of the complex the lower the registered T m for quadruplex DNA, which indicates a destabilizing effect of SmMC at higher GQ : MC ratios. These data implicate a shape and size selective interaction between MCs and GQs that may be exploited for telomere detection.more » « less
-
Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5′ side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genesRPL13AandRPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.more » « less
-
Abstract G-quadruplexes (G4s) are well known non-canonical DNA secondary structures that can form in human cells. Most of the tools available to investigate G4-biology rely on small molecule ligands that stabilise these structures. However, the development of probes that disrupt G4s is equally important to study their biology. In this study, we investigated the disruption of G4s using Locked Nucleic Acids (LNA) as invader probes. We demonstrated that strategic positioning of LNA-modifications within short oligonucleotides (10 nts.) can significantly accelerate the rate of G4-disruption. Single-molecule experiments revealed that short LNA-probes can promote disruption of G4s with mechanical stability sufficient to stall polymerases. We corroborated this using a single-step extension assay, revealing that short LNA-probes can relieve replication dependent polymerase-stalling at G4 sites. We further demonstrated the potential of such LNA-based probes to study G4-biology in cells. By using a dual-luciferase assay, we found that short LNA probes can enhance the expression of c-KIT to levels similar to those observed when the c-KIT promoter is mutated to prevent the formation of the c-KIT1 G4. Collectively, our data suggest a potential use of rationally designed LNA-modified oligonucleotides as an accessible chemical-biology tool for disrupting individual G4s and interrogating their biological functions in cells.more » « less
An official website of the United States government

