skip to main content

Title: A catalogue of unusually long thermonuclear bursts on neutron stars
ABSTRACT Rare, energetic (long) thermonuclear (Type I) X-ray bursts are classified either as intermediate-duration or ‘supern’ bursts, based on their duration. Intermediate-duration bursts lasting a few to tens of minutes are thought to arise from the thermonuclear runaway of a relatively thick (≈1010 g cm−2) helium layer, while superbursts lasting hours are attributed to the detonation of an underlying carbon layer. We present a catalogue of 84 long thermonuclear bursts from 40 low-mass X-ray binaries, and defined from a new set of criteria distinguishing them from the more frequent short bursts. The three criteria are: (1) a total energy release longer than 1040 erg, (2) a photospheric radius expansion phase longer than 10 s, and (3) a burst time-scale longer than 70 s. This work is based on a comprehensive systematic analysis of 70 bursts found with INTEGRAL, RXTE, Swift, BeppoSAX, MAXI, and NICER, as well as 14 long bursts from the literature that were detected with earlier generations of X-ray instruments. For each burst, we measure its peak flux and fluence, which eventually allows us to confirm the distinction between intermediate-duration bursts and superbursts. Additionally, we list 18 bursts that only partially meet the above inclusion criteria, possibly bridging the gap between normal and intermediate-duration bursts. With this catalogue, we significantly increase the number of long-duration bursts included in the MINBAR and thereby provide a substantial sample of these rare X-ray bursts for further study.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
3608 to 3624
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Type I X-ray bursts are rapidly brightening phenomena triggered by thermonuclear burning on the accreting layers of a neutron star (NS). The light curves represent the physical properties of NSs and the nuclear reactions on the proton-rich nuclei. The numerical treatments of the accreting NS and physics of the NS interior are not established, which shows uncertainty in modeling for observed X-ray light curves. In this study, we investigate theoretical X-ray burst models compared with burst light curves with GS 1826-24 observations. We focus on the impacts of the NS mass and radius and base heating on the NS surface using the MESA code. We find a monotonic correlation between the NS mass and the parameters of the light curve. The higher the mass, the longer the recurrence time and the greater the peak luminosity. While the larger the radius, the longer the recurrence time, the peak luminosity remains nearly constant. In the case of increasing base heating, both the recurrence time and peak luminosity decrease. We also examine the above results with a different numerical code, HERES , based on general relativity and consider the central NS. We find that the burst rate, energy, and strength are almost the same in two X-ray burst codes by adjusting the base heat parameter in MESA (the relative errors ≲5%), while the duration and rise times are significantly different between (the relative error is possibly ∼50%). The peak luminosity and the e-folding time change irregularly between two codes for different accretion rates. 
    more » « less
  2. Abstract During the X-ray bursts of GS 1826−24, a “clocked burster”, the nuclear reaction flow that surges through the rapid-proton capture process path has to pass through the NiCu cycles before reaching the ZnGa cycles that moderate further hydrogen burning in the region above the germanium and selenium isotopes. The 57 Cu(p, γ ) 58 Zn reaction that occurs in the NiCu cycles plays an important role in influencing the burst light curves found by Cyburt et al. We deduce the 57 Cu(p, γ ) 58 Zn reaction rate based on the experimentally determined important nuclear structure information, isobaric-multiplet-mass equation, and large-scale shell-model calculations. Based on the isobaric-multiplet-mass equation, we propose a possible order of 1 1 + - and 2 3 + -dominant resonance states and constrain the resonance energy of the 1 2 + state. The latter reduces the contribution of the 1 2 + -dominant resonance state. The new reaction rate is up to a factor of 4 lower than the Forstner et al. rate recommended by JINA REACLIB v2.2 at the temperature regime sensitive to clocked bursts of GS 1826−24. Using the simulation from the one-dimensional implicit hydrodynamic code K epler to model the thermonuclear X-ray bursts of the GS 1826−24 clocked burster, we find that the new 57 Cu(p, γ ) 58 Zn reaction rate, coupled with the latest 56 Ni(p, γ ) 57 Cu and 55 Ni(p, γ ) 56 Cu reaction rates, redistributes the reaction flow in the NiCu cycles and strongly influences the burst ash composition, whereas the 59 Cu(p, α ) 56 Ni and 59 Cu(p, γ ) 60 Zn reactions suppress the influence of the 57 Cu(p, γ ) 58 Zn reaction and diminish the impact of nuclear reaction flow that bypasses the important 56 Ni waiting point induced by the 55 Ni(p, γ ) 56 Cu reaction on the burst light curve. 
    more » « less

    We present a new method of matching observations of Type-I (thermonuclear) X-ray bursts with models, comparing the predictions of a semi-analytic ignition model with X-ray observations of the accretion-powered millisecond pulsar SAX J1808.4–3658 in outburst. We used a Bayesian analysis approach to marginalize over the parameters of interest and determine parameters such as fuel composition, distance/anisotropy factors, neutron star mass, and neutron star radius. Our study includes a treatment of the system inclination effects, inferring that the rotation axis of the system is inclined $\left(69^{+4}_{-2}\right)^\circ$ from the observers line of sight, assuming a flat disc model. This method can be applied to any accreting source that exhibits Type-I X-ray bursts. We find a hydrogen mass fraction of $0.57^{+0.13}_{-0.14}$ and CNO metallicity of $0.013^{+0.006}_{-0.004}$ for the accreted fuel is required by the model to match the observed burst energies, for a distance to the source of $3.3^{+0.3}_{-0.2}\, \mathrm{kpc}$. We infer a neutron star mass of $1.5^{+0.6}_{-0.3}\, \mathrm{M}_{\odot }$ and radius of $11.8^{+1.3}_{-0.9}\, \mathrm{km}$ for a surface gravity of $1.9^{+0.7}_{-0.4}\times 10^{14}\, \mathrm{cm}\, \mathrm{s}^{-2}$ for SAX J1808.4–3658.

    more » « less
  4. Abstract We report on NICER X-ray monitoring of the magnetar SGR 1830−0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: ν = 0.096008680(2) Hz, ν ̇ = − 6.2 ( 1 ) × 10 − 14 Hz s −1 , and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8–7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed. We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum—the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission. 
    more » « less

    Accreting neutron stars (NS) can exhibit high frequency modulations in their lightcurves during thermonuclear X-ray bursts, known as burst oscillations. These frequencies can be offset from the NS spin frequency by several Hz (where known independently) and can drift by 1–3 Hz. One plausible explanation is that a wave is present in the bursting ocean, the rotating frame frequency of which is the offset. The frequency of the wave should decrease (in the rotating frame) as the burst cools hence explaining the drift. A strong candidate is a buoyant r-mode. To date, models that calculated the frequency of this mode taking into account the radial structure neglected relativistic effects and predicted rotating frame frequencies of ∼4 Hz and frequency drifts of >5 Hz; too large to be consistent with observations. We present a calculation that includes frame-dragging and gravitational redshift that reduces the rotating frame frequency by up to $30 \, {\rm per\, cent}$ and frequency drift by up to $20 \, {\rm per\, cent}$. Updating previous models for the ocean cooling in the aftermath of the burst to a model more representative of detailed calculations of thermonuclear X-ray bursts reduces the frequency of the mode still further. This model, combined with relativistic effects, can reduce the rotating frequency of the mode to ∼2 Hz and frequency drift to ∼2 Hz, which is closer to the observed values.

    more » « less