Abstract Magnetic reconnection in the relativistic regime has been proposed as an important process for the efficient production of nonthermal particles and high-energy emission. Using fully kinetic particle-in-cell simulations, we investigate how the guide-field strength and domain size affect the characteristic spectral features and acceleration processes. We study two stages of acceleration: energization up until the injection energyγinjand further acceleration that generates a power-law spectrum. Stronger guide fields increase the power-law index andγinj, which suppresses acceleration efficiency. These quantities seemingly converge with increasing domain size, suggesting that our findings can be extended to large-scale systems. We find that three distinct mechanisms contribute to acceleration during injection: particle streaming along the parallel electric field, Fermi reflection, and the pickup process. The Fermi and pickup processes, related to the electric field perpendicular to the magnetic field, govern the injection for weak guide fields and larger domains. Meanwhile, parallel electric fields are important for injection in the strong guide-field regime. In the post-injection stage, we find that perpendicular electric fields dominate particle acceleration in the weak guide-field regime, whereas parallel electric fields control acceleration for strong guide fields. These findings will help explain the nonthermal acceleration and emission in high-energy astrophysics, including black hole jets and pulsar wind nebulae.
more »
« less
Exact Calculation of Nonideal Fields Demonstrates Their Dominance of Injection in Relativistic Reconnection
Abstract Magnetic reconnection is an important source of energetic particles in systems ranging from astrophysics to the laboratory. The large separation of spatiotemporal scales involved makes it critical to determine the minimum physical model containing the necessary physics for modeling particle acceleration. By resolving the energy gain from ideal and nonideal magnetohydrodynamic electric fields self-consistently in kinetic particle-in-cell simulations of reconnection, we conclusively show the dominant role of the nonideal field for the early stage of energization known as injection. The importance of the nonideal field increases with magnetization, guide field, and in three dimensions, indicating its general importance for reconnection in natural astrophysical systems. We obtain the statistical properties of the injection process from the simulations, paving the way for the development of extended MHD models capable of accurately modeling particle acceleration in large-scale systems. The novel analysis method developed in this study can be applied broadly to give new insight into a wide range of processes in plasma physics.
more »
« less
- Award ID(s):
- 2209471
- PAR ID:
- 10432942
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 952
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L1
- Size(s):
- Article No. L1
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The past decade has seen an outstanding development of nonthermal particle acceleration in magnetic reconnection in magnetically dominated systems, with clear signatures of power-law energy distributions as a common outcome of first-principles kinetic simulations. Here we propose a semianalytical model for systematically investigating nonthermal particle acceleration in reconnection. We show particle energy distributions are well determined by particle injection, acceleration, and escape processes. Using a series of kinetic simulations, we accurately evaluate the energy- and time-dependent model coefficients. The resulting spectral characteristics, including the spectral index and lower and upper bounds of the power-law distribution, agree well with the simulation results. Finally, we apply the model to predict the power-law indices and break energies in astrophysical reconnection systems.more » « less
-
Abstract Magnetic reconnection can power spectacular high-energy astrophysical phenomena by producing nonthermal energy distributions in highly magnetized regions around compact objects. By means of two-dimensional fully kinetic particle-in-cell (PIC) simulations, we investigate relativistic collisionless plasmoid-mediated reconnection in magnetically dominated pair plasmas with and without a guide field. In X-points, where diverging flows result in a nondiagonal thermal pressure tensor, a finite residence time for particles gives rise to a localized collisionless effective resistivity. Here, for the first time for relativistic reconnection in a fully developed plasmoid chain, we identify the mechanisms driving the nonideal electric field using a full Ohm law by means of a statistical analysis based on our PIC simulations. We show that the nonideal electric field is predominantly driven by gradients of nongyrotropic thermal pressures. We propose a kinetic physics motivated nonuniform effective resistivity model that is negligible on global scales and becomes significant only locally in X-points. It captures the properties of collisionless reconnection with the aim of mimicking its essentials in nonideal magnetohydrodynamic descriptions. This effective resistivity model provides a viable opportunity to design physically grounded global models for reconnection-powered high-energy emission.more » « less
-
Magnetic reconnection—a fundamental plasma physics process, where magnetic field lines of opposite polarity annihilate—is invoked in astrophysical plasmas as a powerful mechanism of nonthermal particle acceleration, able to explain fast-evolving, bright high-energy flares. Near black holes and neutron stars, reconnection occurs in the relativistic regime, in which the mean magnetic energy per particle exceeds the rest mass energy. This review reports recent advances in our understanding of the kinetic physics of relativistic reconnection:▪Kinetic simulations have elucidated the physics of plasma heating and nonthermal particle acceleration in relativistic reconnection (RR).▪The physics of radiative RR, with its self-consistent interplay between photons and reconnection-accelerated particles—a peculiarity of luminous, high-energy astrophysical sources—is the new frontier of research.▪RR plays a key role in global models of high-energy sources, in terms of both global-scale layers as well as reconnection sites generated as a by-product of local magnetohydrodynamic instabilities. We summarize themes of active investigation and future directions, emphasizing the role of upcoming observational capabilities, laboratory experiments, and new computational tools.more » « less
-
Abstract Understanding plasma dynamics and nonthermal particle acceleration in 3D magnetic reconnection has been a long-standing challenge. In this paper, we explore these problems by performing large-scale fully kinetic simulations of multi-X-line plasmoid reconnection with various parameters in both the weak- and strong-guide-field regimes. In each regime, we have identified its unique 3D dynamics that lead to field-line chaos and efficient acceleration, and we have achieved nonthermal acceleration of both electrons and protons into power-law spectra. The spectral indices agree well with a simple Fermi acceleration theory that includes guide-field dependence. In the low-guide-field regime, the flux rope kink instability governs the 3D dynamics for efficient acceleration. The weak dependence of the spectra on the ion-to-electron mass ratio andβ(≪1) implies that the particles are sufficiently magnetized for Fermi acceleration in our simulations. While both electrons and protons are injected at reconnection exhausts, protons are primarily injected by perpendicular electric fields through Fermi reflections and electrons are injected by a combination of perpendicular and parallel electric fields. The magnetic power spectra agree with in situ magnetotail observations, and the spectral index may reflect a reconnection-driven size distribution of plasmoids instead of the Goldreich–Sridhar vortex cascade. As the guide field becomes stronger, the oblique flux ropes of large sizes capture the main 3D dynamics for efficient acceleration. Intriguingly, the oblique flux ropes can also experience flux rope kink instability, to drive extra 3D dynamics. This work has broad implications for 3D reconnection dynamics and particle acceleration in heliophysics and astrophysics.more » « less
An official website of the United States government
