Abstract The astrophysical origin of stellar-mass black hole (BH) mergers discovered through gravitational waves (GWs) is widely debated. Mergers in the disks of active galactic nuclei (AGNs) represent promising environments for at least a fraction of these events, with possible observational clues in the GW data. An additional clue to unveil AGN merger environments is provided by possible electromagnetic emission from postmerger accreting BHs. Associated with BH mergers in AGN disks, emission from shocks emerging around jets launched by accreting merger remnants is expected. Here we compute the properties of the emission produced during breakout and the subsequent adiabatic expansion phase of the shocks, and we then apply this model to optical flares suggested to be possibly associated with GW events. We find that the majority of the reported flares can be explained by breakout and shock cooling emission. If the optical flares are produced by shock cooling emission, they would display moderate color evolution, possibly color variations among different events, and a positive correlation between delay time and flare duration and would be preceded by breakout emission in X-rays. If the breakout emission dominates the observed lightcurve, we predict the color to be distributed in a narrow range in the optical band and the delay time from GW to electromagnetic emission to be longer than ∼2 days. Hence, further explorations of delay time distributions, flare color evolution, and associated X-ray emission will be useful to test the proposed emission model for the observed flares.
more »
« less
Observable Signature of Merging Stellar-mass Black Holes in Active Galactic Nuclei
Abstract The origin of stellar-mass black hole mergers discovered through gravitational waves is being widely debated. Mergers in the disks of active galactic nuclei (AGNs) represent a promising source of origin, with possible observational clues in the gravitational-wave data. Beyond gravitational waves, a unique signature of AGN-assisted mergers is electromagnetic emission from the accreting black holes. Here we show that jets launched by accreting black holes merging in an AGN disk can be detected as peculiar transients by infrared, optical, and X-ray observatories. We further show that this emission mechanism can explain the possible associations between gravitational-wave events and the optical transient ZTF 19abanrhr and the proposed gamma-ray counterparts GW150914-GBM and LVT151012-GBM. We demonstrate how these associations, if genuine, can be used to reconstruct the properties of these events’ environments. Searching for infrared and X-ray counterparts to similar electromagnetic transients in the future, once host galaxies are localized by optical observations, could provide a smoking-gun signature of the mergers’ AGN origin.
more »
« less
- Award ID(s):
- 2006839
- PAR ID:
- 10433008
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 950
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 13
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Stellar-mass black holes (BHs) are predicted to be embedded in the disks of active galactic nuclei (AGNs) due to gravitational drag and in situ star formation. However, clear evidence for AGN disk-embedded BHs is currently lacking. Here, as possible electromagnetic signatures of these BHs, we investigate breakout emission from shocks emerging around Blandford–Znajek jets launched from accreting BHs in AGN disks. We assume that most of the highly super-Eddington flow reaches the BH and produces a strong jet, and the jet produces feedback that shuts off accretion and thus leads to episodic flaring. These assumptions, while poorly understood at present, yield observable consequences that can probe the presence of AGN-embedded BHs as well as the accretion process itself. They predict a breakout emission characterized by luminous thermal emission in the X-ray bands and bright broadband nonthermal emission from the infrared to the gamma-ray bands. The flare duration depends on the BH’s distance r from the central supermassive BH, varying between 10 3 –10 6 s for r ∼ 0.01–1 pc. This emission can be discovered by current and future infrared, optical, and X-ray wide-field surveys and monitoring campaigns of nearby AGNs.more » « less
-
ABSTRACT Neutron star–black hole (NSBH) mergers detected in gravitational waves have the potential to shed light on supernova physics, the dense matter equation of state, and the astrophysical processes that power their potential electromagnetic counterparts. We use the population of four candidate NSBH events detected in gravitational waves so far with a false alarm rate ≤1 yr−1 to constrain the mass and spin distributions and multimessenger prospects of these systems. We find that the black holes in NSBHs are both less massive and have smaller dimensionless spins than those in black hole binaries. We also find evidence for a mass gap between the most massive neutron stars and least massive black holes in NSBHs at 98.6-per cent credibility. Using an approach driven by gravitational-wave data rather than binary simulations, we find that fewer than 14 per cent of NSBH mergers detectable in gravitational waves will have an electromagnetic counterpart. While the inferred presence of a mass gap and fraction of sources with a counterpart depend on the event selection and prior knowledge of source classification, the conclusion that the black holes in NSBHs have lower masses and smaller spin parameters than those in black hole binaries is robust. Finally, we propose a method for the multimessenger analysis of NSBH mergers based on the non-detection of an electromagnetic counterpart and conclude that, even in the most optimistic case, the constraints on the neutron star equation of state that can be obtained with multimessenger NSBH detections are not competitive with those from gravitational-wave measurements of tides in binary neutron star mergers and radio and X-ray pulsar observations.more » « less
-
Abstract We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers.more » « less
-
Standard sirens have been the central paradigm in gravitational-wave cosmology so far. From the gravitational wave signature of compact star binaries, it is possible to measure the luminosity distance of the source directly, and if additional information on the source redshift is provided, a measurement of the cosmological expansion can be performed. This review article discusses several methodologies that have been proposed to use gravitational waves for cosmological studies. Methods that use only gravitational-wave signals and methods that use gravitational waves in conjunction with additional observations such as electromagnetic counterparts and galaxy catalogs will be discussed. The review also discusses the most recent results on gravitational-wave cosmology, starting from the binary neutron star merger GW170817 and its electromagnetic counterpart and finishing with the population of binary black holes, observed with the third Gravitational-wave Transient Catalog GWTC–3.more » « less
An official website of the United States government

