skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: AI and formative assessment: The train has left the station
Abstract In response to Li, Reigh, He, and Miller's commentary,Can we and should we use artificial intelligence for formative assessment in science, we argue that artificial intelligence (AI) is already being widely employed in formative assessment across various educational contexts. While agreeing with Li et al.'s call for further studies on equity issues related to AI, we emphasize the need for science educators to adapt to the AI revolution that has outpaced the research community. We challenge the somewhat restrictive view of formative assessment presented by Li et al., highlighting the significant contributions of AI in providing formative feedback to students, assisting teachers in assessment practices, and aiding in instructional decisions. We contend that AI‐generated scores should not be equated with the entirety of formative assessment practice; no single assessment tool can capture all aspects of student thinking and backgrounds. We address concerns raised by Li et al. regarding AI bias and emphasize the importance of empirical testing and evidence‐based arguments in referring to bias. We assert that AI‐based formative assessment does not necessarily lead to inequity and can, in fact, contribute to more equitable educational experiences. Furthermore, we discuss how AI can facilitate the diversification of representational modalities in assessment practices and highlight the potential benefits of AI in saving teachers’ time and providing them with valuable assessment information. We call for a shift in perspective, from viewing AI as a problem to be solved to recognizing its potential as a collaborative tool in education. We emphasize the need for future research to focus on the effective integration of AI in classrooms, teacher education, and the development of AI systems that can adapt to diverse teaching and learning contexts. We conclude by underlining the importance of addressing AI bias, understanding its implications, and developing guidelines for best practices in AI‐based formative assessment.  more » « less
Award ID(s):
2138854 2101104
PAR ID:
10433029
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Research in Science Teaching
Volume:
60
Issue:
6
ISSN:
0022-4308
Page Range / eLocation ID:
p. 1390-1398
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sinatra, Anne; Goldberg, Benjamin (Ed.)
    Over the past decade, the educational landscape has experienced a surge of online learning and instruc-tional platforms (Liu et al., 2020). This remarkable surge can be attributed to a confluence of factors, including the rising demand for higher education opportunities, the shortage of available teaching staff, and the rapid advancements in information technology and artificial intelligence capabilities. Artificial Intelligence (AI) remained a niche area of research with limited practical applications in education for over half a century (Bhutoria, 2022; Chen et al., 2020; Roll & Wylie, 2016) from 1950 to 2010. Howev-er, in recent years, the advent of Big Data and advancements in computing power have propelled AI into the educational mainstream (Alam, 2021; Chen et al., 2020; Hwang et al., 2020). Today, the rise of machine learning, deep learning, automation, together with advances in big data analysis has sparked novel perspectives and explorations around the potential of enhancing personalized learning, a long-term educational vision of technology-enhanced course options to meet student needs (Grant & Basye, 2014). Fostering personalized learning necessitates the development of digital learning environments that dynamically adapt to individual learners' knowledge, prior experiences, and interests, while effectively and efficiently guiding them towards achieving desired learning outcomes (Spector, 2014, 2016). AI-powered technologies have made it possible to analyze data generated by learners and provide instruc-tion that matches their learning performance. Through learning analytics and data mining techniques, large datasets collected are analyzed and processed to uncover learners' unique learning characteristics, often referred to as learner profiling (Tzouveli et al., 2008). Subsequently, leveraging artificial intelli-gence algorithms, the learning content is tailored, and personalized learning paths are designed to align with each learner's identified needs and preferences, thereby facilitating personalized learning experienc-es. 
    more » « less
  2. The ubiquity of AI in society means the time is ripe to consider what educated 21st century digital citizens should know about this subject. In May 2018, the Association for the Advancement of Artificial Intelligence (AAAI) and the Computer Science Teachers Association (CSTA) formed a joint working group to develop national guidelines for teaching AI to K-12 students. Inspired by CSTA's national standards for K-12 computing education, the AI for K-12 guidelines will define what students in each grade band should know about artificial intelligence, machine learning, and robotics. The AI for K-12 working group is also creating an online resource directory where teachers can find AI- related videos, demos, software, and activity descriptions they can incorporate into their lesson plans. This blue sky talk invites the AI research community to reflect on the big ideas in AI that every K-12 student should know, and how we should communicate with the public about advances in AI and their future impact on society. It is a call to action for more AI researchers to become AI educators, creating resources that help teachers and students understand our work. 
    more » « less
  3. Abstract We discuss transforming STEM education using three aspects: learning progressions (LPs), constructed response performance assessments, and artificial intelligence (AI). Using LPs to inform instruction, curriculum, and assessment design helps foster students’ ability to apply content and practices to explain phenomena, which reflects deeper science understanding. To measure the progress along these LPs, performance assessments combining elements of disciplinary ideas, crosscutting concepts and practices are needed. However, these tasks are time-consuming and expensive to score and provide feedback for. Artificial intelligence (AI) allows to validate the LPs and evaluate performance assessments for many students quickly and efficiently. The evaluation provides a report describing student progress along LP and the supports needed to attain a higher LP level. We suggest using unsupervised, semi-supervised ML and generative AI (GAI) at early LP validation stages to identify relevant proficiency patterns and start building an LP. We further suggest employing supervised ML and GAI for developing targeted LP-aligned performance assessment for more accurate performance diagnosis at advanced LP validation stages. Finally, we discuss employing AI for designing automatic feedback systems for providing personalized feedback to students and helping teachers implement LP-based learning. We discuss the challenges of realizing these tasks and propose future research avenues. 
    more » « less
  4. There is growing awareness of the central role that artificial intelligence (AI) plays now and in children's futures. This has led to increasing interest in engaging K-12 students in AI education to promote their understanding of AI concepts and practices. Leveraging principles from problem-based pedagogies and game-based learning, our approach integrates AI education into a set of unplugged activities and a game-based learning environment. In this work, we describe outcomes from our efforts to co design problem-based AI curriculum with elementary school teachers. 
    more » « less
  5. This is a contribution to a Symposium This symposium will provide opportunities for discussion about how Artificial Intelligence can support ambitious learning practices in CSCL. To the extent that CSCL can be a lever for educational equitable educational change, AI needs to be able to support the kinds of practices that afford agency to students and teachers. However, AI also brings to the fore the need to consider equity and ethics. This interactive session will provide opportunities to discuss these issues in the context of the examples presented here. Our contribution is focused on two participatory design studies we conducted with 14 teachers to understand the kinds of automatic feedback they thought would support their students’ science explanation writing as well as how they would like summaries of information from students’ writing presented in a teacher’s dashboard. We also discuss how we developed our system, PyrEval, for automated writing support based on historical data and scoring from manual coding rubrics. 
    more » « less