West Nile virus (WNV) is the leading cause of mosquito-borne illness in the USA. There are currently no human vaccines or therapies available for WNV, and vector control is the primary strategy used to control WNV transmission. The WNV vectorCulex tarsalisis also a competent host for the insect-specific virus (ISV) Eilat virus (EILV). ISVs such as EILV can interact with and cause superinfection exclusion (SIE) against human pathogenic viruses in their shared mosquito host, altering vector competence for these pathogenic viruses. The ability to cause SIE and their host restriction make ISVs a potentially safe tool to target mosquito-borne pathogenic viruses. In the present study, we tested whether EILV causes SIE against WNV in mosquito C6/36 cells andC. tarsalismosquitoes. The titres of both WNV strains – WN02-1956 and NY99 – were suppressed by EILV in C6/36 cells as early as 48–72 h post-superinfection at both m.o.i. values tested in our study. The titres of WN02-1956 at both m.o.i. values remained suppressed in C6/36 cells, whereas those of NY99 showed some recovery towards the final timepoint. The mechanism of SIE remains unknown, but EILV was found to interfere with NY99 attachment in C6/36 cells, potentially contributing to the suppression of NY99 titres. However, EILV had no effect on the attachment of WN02-1956 or internalization of either WNV strain under superinfection conditions. InC. tarsalis, EILV did not affect the infection rate of either WNV strain at either timepoint. However, in mosquitoes,EILV enhanced NY99 infection titres at 3 days post-superinfection, but this effect disappeared at 7 days post-superinfection. In contrast, WN02-1956 infection titres were suppressed by EILV at 7 days post-superinfection. The dissemination and transmission of both WNV strains were not affected by superinfection with EILV at either timepoint. Overall, EILV caused SIE against both WNV strains in C6/36 cells; however, inC. tarsalis, SIE caused by EILV was strain specific potentially owing to differences in the rate of depletion of shared resources by the individual WNV strains. 
                        more » 
                        « less   
                    
                            
                            Viral DNA Accumulation Regulates Replication Efficiency of Chlorovirus OSy-NE5 in Two Closely Related Chlorella variabilis Strains
                        
                    
    
            Many chloroviruses replicate in Chlorella variabilis algal strains that are ex-endosymbionts isolated from the protozoan Paramecium bursaria, including the NC64A and Syngen 2-3 strains. We noticed that indigenous water samples produced a higher number of plaque-forming viruses on C. variabilis Syngen 2-3 lawns than on C. variabilis NC64A lawns. These observed differences led to the discovery of viruses that replicate exclusively in Syngen 2-3 cells, named Only Syngen (OSy) viruses. Here, we demonstrate that OSy viruses initiate infection in the restricted host NC64A by synthesizing some early virus gene products and that approximately 20% of the cells produce a small number of empty virus capsids. However, the infected cells did not produce infectious viruses because the cells were unable to replicate the viral genome. This is interesting because all previous attempts to isolate host cells resistant to chlorovirus infection were due to changes in the host receptor for the virus. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1736030
- PAR ID:
- 10433058
- Date Published:
- Journal Name:
- Viruses
- Volume:
- 15
- Issue:
- 6
- ISSN:
- 1999-4915
- Page Range / eLocation ID:
- 1341
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Theory, simulation, and experimental evolution demonstrate that diversified CRISPR-Cas immunity to lytic viruses can lead to stochastic virus extinction due to a limited number of susceptible hosts available to each potential new protospacer escape mutation. Under such conditions, theory predicts that to evade extinction, viruses evolve toward decreased virulence and promote vertical transmission and persistence in infected hosts. To better understand the evolution of host-virus interactions in microbial populations with active CRISPR-Cas immunity, we studied the interaction between CRISPR-immune Sulfolobus islandicus cells and immune-deficient strains that are infected by the chronic virus SSV9. We demonstrate that Sulfolobus islandicus cells infected with SSV9, and with other related SSVs, kill uninfected, immune strains through an antagonistic mechanism that is a protein and is independent of infectious virus. Cells that are infected with SSV9 are protected from killing and persist in the population. We hypothesize that this infection acts as a form of mutualism between the host and the virus by removing competitors in the population and ensuring continued vertical transmission of the virus within populations with diversified CRISPR-Cas immunity. IMPORTANCE Multiple studies, especially those focusing on the role of lytic viruses in key model systems, have shown the importance of viruses in shaping microbial populations. However, it has become increasingly clear that viruses with a long host-virus interaction, such as those with a chronic lifestyle, can be important drivers of evolution and have large impacts on host ecology. In this work, we describe one such interaction with the acidic crenarchaeon Sulfolobus islandicus and its chronic virus Sulfolobus spindle-shaped virus 9. Our work expands the view in which this symbiosis between host and virus evolved, describing a killing phenotype which we hypothesize has evolved in part due to the high prevalence and diversity of CRISPR-Cas immunity seen in natural populations. We explore the implications of this phenotype in population dynamics and host ecology, as well as the implications of mutualism between this virus-host pair.more » « less
- 
            Viral Hemorrhagic Septicemia virus (VHSV) is a pathogenic fish rhabdovirus found in discrete locales throughout the northern hemisphere. VHSV infection of fish cells leads to upregulation of the host's virus detection response, but the virus quickly suppresses interferon (IFN) production and antiviral genes expression. By systematically screening each of the six VHSV structural and nonstructural genes, we have identified matrix protein (M) as its most potent anti-host protein. VHSV-IVb M alone suppressed mitochondrial antiviral signaling protein (MAVS) and type I IFN-induced gene expression in a dose-dependent manner. M also suppressed the constitutively active SV40 promoter and globally decreased cellular RNA levels. Chromatin immunoprecipitation (ChIP) studies illustrated that M inhibited RNA polymerase II (RNAP II) recruitment to gene promoters, and decreased RNAP II CTD Ser2 phosphorylation during VHSV infection. However, transcription directed by RNAP I-III was suppressed by M. To identify regions of functional importance, M proteins from a variety of VHSV strains were tested in cell-based transcriptional inhibition assays. M protein of a particular VHSV-Ia strain, F1, was significantly less potent than -IVb M at inhibiting SV40/luc expression, yet differed by just four amino acids. Mutation of D62 to alanine alone, or in combination with an E181 to alanine mutation (D62A/E181A), dramatically reduced the ability of -IVb M to suppress host transcription. Introducing either M D62A or D62A/E181A mutations into VHSV-IVb via reverse genetics resulted in viruses that replicated efficiently but exhibited less cytotoxicity and reduced anti-transcriptional activities, implicating M as a primary regulator of cytopathicity and host transcriptional suppression. Importance: Viruses must suppress host antiviral responses to replicate and spread between hosts. In these studies, we identified the matrix protein of the deadly fish Novirhabdovirus, VHSV, as a critical mediator of host suppression during infection. Our studies indicated that M alone could block cellular gene expression at very low expression levels. We identified several subtle mutations in M that were less potent at suppressing host transcription. When these mutations were engineered back into recombinant viruses, the resulting viruses replicated well but elicited less toxicity in infected cells and activated host innate immune responses more robustly. These data demonstrated that VHSV M plays an important role in mediating both virus-induced cell toxicity and viral replication. Our data suggest that its roles in these two processes can be separated to design effective attenuated viruses for vaccine candidates.more » « less
- 
            Baculoviruses are large dsDNA viruses that are virulent pathogens of certain insect species. In a natural host, Trichoplusia ni, infection by the model baculovirus Autographa californica Multiple Nucleopolyhedrovirus (AcMNPV) begins when the occluded form of the virus disassembles in the midgut and virions infect midgut epithelial cells to establish the primary phase of the infection. To better understand the primary phase of the AcMNPV infection cycle, newly molted 5 th instar T. ni larvae were orally infected with AcMNPV occlusion bodies and transcriptional responses of the T. ni midgut were analyzed at various times from 0-72 hours post infection, using RNA-Seq analysis and a T. ni reference genome. The numbers of differentially expressed host genes increased as the infection progressed, and we identified a total of 3,372 differentially expressed T. ni transcripts in the AcMNPV-infected midgut. Genes encoding orthologs of HMG176, atlastin, and CPH43 were among the most dramatically upregulated in response to AcMNPV infection. A number of cytochrome P450 genes were downregulated in response to infection. We also identified the effects of AcMNPV infection on a large variety of genes associated with innate immunity. This analysis provides an abundance of new and detailed information on host responses to baculovirus infection during the primary phase of the infection in the midgut, and will be important for understanding how baculoviruses establish productive infections in the organism. IMPORTANCE Baculoviruses are virulent pathogens of a number of important insect pest species. In the host Trichoplusia ni , infection begins in the midgut when infectious virions of the occulsion derived virus (ODV) phenotype enter and subsequently replicate in cells of the midgut epithelium. A second virion phenotype (budded virus or BV) is produced there and BV mediates systemic infection of the animal. Most prior detailed studies of baculovirus infections have focused on BV infections of cultured cells. In this study, we examined the transcriptional responses of the T. ni midgut to infection by ODV of the baculovirus AcMNPV, and identified a variety of host genes that respond dramatically to viral infection. Understanding transcriptional responses of the host midgut to viral infection is critically important for understanding the biphasic infection in the animal as a whole.more » « less
- 
            Virus–host interactions evolve along a symbiosis continuum from antagonism to mutualism. Long-term associations between virus and host, such as those in chronic infection, will select for traits that drive the interaction towards mutualism, especially when susceptible hosts are rare in the population. Virus–host mutualism has been demonstrated in thermophilic archaeal populations where Sulfolobus spindle-shaped viruses (SSVs) provide a competitive advantage to their host Sulfolobus islandicus by producing a toxin that kills uninfected strains. Here, we determine the genetic basis of this killing phenotype by identifying highly transcribed genes in cells that are chronically infected with a diversity of SSVs. We demonstrate that these genes alone confer growth inhibition by being expressed in uninfected cells via a Sulfolobus expression plasmid. Challenge of chronically infected strains with vector-expressed toxins revealed a nested network of cross-toxicity among divergent SSVs, with both broad and specific toxin efficacies. This suggests that competition between viruses and/or their hosts could maintain toxin diversity. We propose that competitive interactions among chronic viruses to promote their host fitness form the basis of virus–host mutualism. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    