Language understanding involves processing text with both the grammatical and 2 common-sense contexts of the text fragments. The text “I went to the grocery store 3 and brought home a car” requires both the grammatical context (syntactic) and 4 common-sense context (semantic) to capture the oddity in the sentence. Contex5 tualized text representations learned by Language Models (LMs) are expected to 6 capture a variety of syntactic and semantic contexts from large amounts of training 7 data corpora. Recent work such as ERNIE has shown that infusing the knowl8 edge contexts, where they are available in LMs, results in significant performance 9 gains on General Language Understanding (GLUE) benchmark tasks. However, 10 to our knowledge, no knowledge-aware model has attempted to infuse knowledge 11 through top-down semantics-driven syntactic processing (Eg: Common-sense to 12 Grammatical) and directly operated on the attention mechanism that LMs leverage 13 to learn the data context. We propose a learning framework Top-Down Language 14 Representation (TDLR) to infuse common-sense semantics into LMs. In our 15 implementation, we build on BERT for its rich syntactic knowledge and use the 16 knowledge graphs ConceptNet and WordNet to infuse semantic knowledge. 
                        more » 
                        « less   
                    
                            
                            KALM: Knowledge-Aware Integration of Local, Document, and Global Contexts for Long Document Understanding
                        
                    
    
            With the advent of pre-trained language models (LMs), increasing research efforts have been focusing on infusing commonsense and domain-specific knowledge to prepare LMs for downstream tasks. These works attempt to leverage knowledge graphs, the de facto standard of symbolic knowledge representation, along with pre-trained LMs. While existing approaches leverage external knowledge, it remains an open question how to jointly incorporate knowledge graphs represented in varying contexts — from local (e.g., sentence), document-level, to global knowledge, to enable knowledge-rich and interpretable exchange across contexts. In addition, incorporating varying contexts can especially benefit long document understanding tasks that leverage pre-trained LMs, typically bounded by the input sequence length. In light of these challenges, we propose KALM, a language model that jointly leverages knowledge in local, document-level, and global contexts for long document understanding. KALM firstly encodes long documents and knowledge graphs into the three knowledge-aware context representations. KALM then processes each context with context-specific layers. These context-specific layers are followed by a ContextFusion layer that facilitates knowledge exchange to derive an overarching document representation. Extensive experiments demonstrate that KALM achieves state-of-the-art performance on three long document understanding tasks across 6 datasets/settings. Further analyses reveal that the three knowledge-aware contexts are complementary and they all contribute to model performance, while the importance and information exchange patterns of different contexts vary on different tasks and datasets. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10433151
- Date Published:
- Journal Name:
- ACL: Annual Meeting of the Association for Computational Linguistics
- Page Range / eLocation ID:
- 2116–2138
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Proceedings of the Sixteenth (Ed.)Instead of mining coherent topics from a given text corpus in a completely unsupervised manner, seed-guided topic discovery methods leverage user-provided seed words to extract distinctive and coherent topics so that the mined topics can better cater to the user’s interest. To model the semantic correlation between words and seeds for discovering topic-indicative terms, existing seedguided approaches utilize different types of context signals, such as document-level word co-occurrences, sliding window-based local contexts, and generic linguistic knowledge brought by pre-trained language models. In this work, we analyze and show empirically that each type of context information has its value and limitation in modeling word semantics under seed guidance, but combining three types of contexts (i.e., word embeddings learned from local contexts, pre-trained language model representations obtained from general-domain training, and topic-indicative sentences retrieved based on seed information) allows them to complement each other for discovering quality topics. We propose an iterative framework, SeedTopicMine, which jointly learns from the three types of contexts and gradually fuses their context signals via an ensemble ranking process. Under various sets of seeds and on multiple datasets, SeedTopicMine consistently yields more coherent and accurate topics than existing seed-guided topic discovery approaches.more » « less
- 
            Generalization to novel object configurations and instances across diverse tasks and environments is a critical challenge in robotics. Keypoint-based representations have been proven effective as a succinct representation for capturing essential object features, and for establishing a reference frame in action prediction, enabling data-efficient learning of robot skills. However, their manual design nature and reliance on additional human labels limit their scalability. In this paper, we propose KALM, a framework that leverages large pre-trained vision-language models (LMs) to automatically generate taskrelevant and cross-instance consistent keypoints. KALM distills robust and consistent keypoints across views and objects by generating proposals using LMs and verifies them against a small set of robot demonstration data. Based on the generated keypoints, we can train keypoint-conditioned policy models that predict actions in keypoint-centric frames, enabling robots to generalize effectively across varying object poses, camera views, and object instances with similar functional shapes. Our method demonstrates strong performance in the real world, adapting to different tasks and environments from only a handful of demonstrations while requiring no additional labels.more » « less
- 
            Unstructured data, especially text, continues to grow rapidly in various domains. In particular, in the financial sphere, there is a wealth of accumulated unstructured financial data, such as the textual disclosure documents that companies submit on a regular basis to regulatory agencies, such as the Securities and Exchange Commission (SEC). These documents are typically very long and tend to contain valuable soft information about a company's performance. It is therefore of great interest to learn predictive models from these long textual documents, especially for forecasting numerical key performance indicators (KPIs). Whereas there has been a great progress in pre-trained language models (LMs) that learn from tremendously large corpora of textual data, they still struggle in terms of effective representations for long documents. Our work fills this critical need, namely how to develop better models to extract useful information from long textual documents and learn effective features that can leverage the soft financial and risk information for text regression (prediction) tasks. In this paper, we propose and implement a deep learning framework that splits long documents into chunks and utilizes pre-trained LMs to process and aggregate the chunks into vector representations, followed by self-attention to extract valuable document-level features. We evaluate our model on a collection of 10-K public disclosure reports from US banks, and another dataset of reports submitted by US companies. Overall, our framework outperforms strong baseline methods for textual modeling as well as a baseline regression model using only numerical data. Our work provides better insights into how utilizing pre-trained domain-specific and fine-tuned long-input LMs in representing long documents can improve the quality of representation of textual data, and therefore, help in improving predictive analyses.more » « less
- 
            Retrieval-augmented generation (RAG) enhances large language models (LLMs) by incorporating external data sources beyond their training sets and querying predefined knowledge bases to generate accurate, context-rich responses. Most RAG implementations use vector similarity searches, but the effectiveness of this approach and the representation of knowledge bases remain underexplored. Emerging research suggests knowledge graphs as a promising solution. Therefore, this paper presents StructuGraphRAG, which leverages document structures to inform the extraction process and constructs knowledge graphs to enhance RAG for social science research, specifically using NSDUH datasets. Our method parses document structures to extract entities and relationships, constructing comprehensive and relevant knowledge graphs. Experimental results show that StructuGraphRAG outperforms traditional RAG methods in accuracy, comprehensiveness, and contextual relevance. This approach provides a robust tool for social science researchers, facilitating precise analysis of social determinants of health and justice, and underscores the potential of structured document-informed knowledge graph construction in AI and social science research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    