skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Split-Lohmann Multifocal Displays

This work provides the design of a multifocal display that can create a dense stack of focal planes in a single shot. We achieve this using a novel computational lens that provides spatial selectivity in its focal length, i.e, the lens appears to have different focal lengths across points on a display behind it. This enables a multifocal display via an appropriate selection of the spatially-varying focal length, thereby avoiding time multiplexing techniques that are associated with traditional focus tunable lenses. The idea central to this design is a modification of a Lohmann lens, a focus tunable lens created with two cubic phase plates that translate relative to each other. Using optical relays and a phase spatial light modulator, we replace the physical translation of the cubic plates with an optical one, while simultaneously allowing for different pixels on the display to undergo different amounts of translations and, consequently, different focal lengths. We refer to this design as a Split-Lohmann multifocal display. Split-Lohmann displays provide a large étendue as well as high spatial and depth resolutions; the absence of time multiplexing and the extremely light computational footprint for content processing makes it suitable for video and interactive experiences. Using a lab prototype, we show results over a wide range of static, dynamic, and interactive 3D scenes, showcasing high visual quality over a large working range.

 
more » « less
Award ID(s):
2008464 1730147
PAR ID:
10433220
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
42
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Flat lenses with focal length tunability can enable the development of highly integrated imaging systems. This work explores machine learning to inverse design a multifocal multilevel diffractive lens (MMDL) by wavelength multiplexing. The MMDL output is multiplexed in three color channels, red (650 nm), green (550 nm), and blue (450 nm), to achieve varied focal lengths of 4 mm, 20 mm, and 40 mm at these three color channels, respectively. The focal lengths of the MMDL scale significantly with the wavelength in contrast to conventional diffractive lenses. The MMDL consists of concentric rings with equal widths and varied heights. The machine learning method is utilized to optimize the height of each concentric ring to obtain the desired phase distribution so as to achieve varied focal lengths multiplexed by wavelengths. The designed MMDL is fabricated through a direct-write laser lithography system with gray-scale exposure. The demonstrated singlet lens is miniature and polarization insensitive, and thus can potentially be applied in integrated optical imaging systems to achieve zooming functions.

     
    more » « less
  2. Abstract

    Miniature lenses with a tunable focus are essential components for many modern applications involving compact optical systems. While several tunable lenses have been reported with various tuning mechanisms, they often face challenges with respect to power consumption, tuning speed, fabrication cost, or production scalability. In this work, we have adapted the mechanism of an Alvarez lens – a varifocal composite lens in which lateral shifts of two optical elements with cubic phase surfaces give rise to a change in the optical power – to construct a miniature, microelectromechanical system (MEMS)-actuated metasurface Alvarez lens. Implementation based on an electrostatic MEMS generates fast and controllable actuation with low power consumption. The utilization of metasurfaces – ultrathin and subwavelength-patterned diffractive optics – as optical elements greatly reduces the device volume compared to systems using conventional freeform lenses. The entire MEMS Alvarez metalens is fully compatible with modern semiconductor fabrication technologies, granting it the potential to be mass-produced at a low unit cost. In the reported prototype operating at 1550 nm wavelength, a total uniaxial displacement of 6.3 µm was achieved in the Alvarez metalens with a direct-current (DC) voltage application up to 20 V, which modulated the focal position within a total tuning range of 68 µm, producing more than an order of magnitude change in the focal length and a 1460-diopter change in the optical power. The MEMS Alvarez metalens has a robust design that can potentially generate a much larger tuning range without substantially increasing the device volume or energy consumption, making it desirable for a wide range of imaging and display applications.

     
    more » « less
  3. Abstract

    High-degree time-multiplexed multifocal multiphoton microscopy was expected to provide a facile path to scanningless optical-sectioning and the fast imaging of dynamic three-dimensional biological systems. However, physical constraints on typical time multiplexing devices, arising from diffraction in the free-space propagation of light waves, lead to significant manufacturing difficulties and have prevented the experimental realization of high-degree time multiplexing. To resolve this issue, we have developed a novel method using optical fiber bundles of various lengths to confine the diffraction of propagating light waves and to create a time multiplexing effect. Through this method, we experimentally demonstrate the highest degree of time multiplexing ever achieved in multifocal multiphoton microscopy (~50 times larger than conventional approaches), and hence the potential of using simply-manufactured devices for scanningless optical sectioning of biological systems.

     
    more » « less
  4. A conventional optical lens can enhance lateral resolution in optical coherence tomography (OCT) by focusing the input light onto the sample. However, the typical Gaussian beam profile of such a lens will impose a tradeoff between the depth of focus (DOF) and the lateral resolution. The lateral resolution is often compromised to achieve amm-scale DOF. We have experimentally shown that using a cascade system of an ultrasonic virtual tunable optical waveguide (UVTOW) and a short focal-length lens can provide a large DOF without severely compromising the lateral resolution compared to an external lens with the same effective focal length. In addition, leveraging the reconfigurability of UVTOW, we show that the focal length of the cascade system can be tuned without the need for mechanical translation of the optical lens. We compare the performance of the cascade system with a conventional optical lens to demonstrate enhanced DOF without compromising the lateral resolution as well as reconfigurability of UVTOW for OCT imaging.

     
    more » « less
  5. Khoo, Iam Choon (Ed.)
    Lenses with tunable focal lengths play important roles in nature as well as modern technologies. In recent years, the demand for electrically tunable lenses and lens arrays has grown, driven by the increasing interest in augmented and virtual reality, as well as sensing applications. In this paper, we present a novel type of electrically tunable microlens utilizing polymer-stabilized chiral ferroelectric nematic liquid crystal. The lens offers a fast response time (5ms) and the focal length can be tuned by applying an in-plane electric field. The electrically induced change in the lens shape, facilitated by the remarkable sensitivity of the chiral ferroelectric nematic to electric fields, enables the tunable focal length capability. The achieved performance of this lens represents a significant advancement compared to electrowetting-based liquid lenses and opens exciting prospects in various fields, including biomimetic optics, security printing, solar energy concentration, and AR/VR devices. 
    more » « less