skip to main content


Title: The MillenniumTNG Project: high-precision predictions for matter clustering and halo statistics
ABSTRACT

Cosmological inference with large galaxy surveys requires theoretical models that combine precise predictions for large-scale structure with robust and flexible galaxy formation modelling throughout a sufficiently large cosmic volume. Here, we introduce the millenniumTNG (MTNG) project which combines the hydrodynamical galaxy formation model of illustrisTNG with the large volume of the millennium simulation. Our largest hydrodynamic simulation, covering $(500 \, h^{-1}{\rm Mpc})^3 \simeq (740\, {\rm Mpc})^3$, is complemented by a suite of dark-matter-only simulations with up to 43203 dark matter particles (a mass resolution of $1.32\times 10^8 \, h^{-1}{\rm M}_\odot$) using the fixed-and-paired technique to reduce large-scale cosmic variance. The hydro simulation adds 43203 gas cells, achieving a baryonic mass resolution of $2\times 10^7 \, h^{-1}{\rm M}_\odot$. High time-resolution merger trees and direct light-cone outputs facilitate the construction of a new generation of semi-analytic galaxy formation models that can be calibrated against both the hydro simulation and observation, and then applied to even larger volumes – MTNG includes a flagship simulation with 1.1 trillion dark matter particles and massive neutrinos in a volume of $(3000\, {\rm Mpc})^3$. In this introductory analysis we carry out convergence tests on basic measures of non-linear clustering such as the matter power spectrum, the halo mass function and halo clustering, and we compare simulation predictions to those from current cosmological emulators. We also use our simulations to study matter and halo statistics, such as halo bias and clustering at the baryonic acoustic oscillation scale. Finally we measure the impact of baryonic physics on the matter and halo distributions.

 
more » « less
NSF-PAR ID:
10433244
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2556-2578
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Cosmological simulations are an important theoretical pillar for understanding non-linear structure formation in our Universe and for relating it to observations on large scales. In several papers, we introduce our MillenniumTNG (MTNG) project that provides a comprehensive set of high-resolution, large-volume simulations of cosmic structure formation aiming to better understand physical processes on large scales and to help interpret upcoming large-scale galaxy surveys. We here focus on the full physics box MTNG740 that computes a volume of $740\, \mathrm{Mpc}^3$ with a baryonic mass resolution of $3.1\times ~10^7\, \mathrm{M_\odot }$ using arepo with 80.6 billion cells and the IllustrisTNG galaxy formation model. We verify that the galaxy properties produced by MTNG740 are consistent with the TNG simulations, including more recent observations. We focus on galaxy clusters and analyse cluster scaling relations and radial profiles. We show that both are broadly consistent with various observational constraints. We demonstrate that the SZ-signal on a deep light-cone is consistent with Planck limits. Finally, we compare MTNG740 clusters with galaxy clusters found in Planck and the SDSS-8 RedMaPPer richness catalogue in observational space, finding very good agreement as well. However, simultaneously matching cluster masses, richness, and Compton-y requires us to assume that the SZ mass estimates for Planck clusters are underestimated by 0.2 dex on average. Due to its unprecedented volume for a high-resolution hydrodynamical calculation, the MTNG740 simulation offers rich possibilities to study baryons in galaxies, galaxy clusters, and in large-scale structure, and in particular their impact on upcoming large cosmological surveys.

     
    more » « less
  2. ABSTRACT

    Extracting information from the total matter power spectrum with the precision needed for upcoming cosmological surveys requires unraveling the complex effects of galaxy formation processes on the distribution of matter. We investigate the impact of baryonic physics on matter clustering at z = 0 using a library of power spectra from the Cosmology and Astrophysics with MachinE Learning Simulations project, containing thousands of $(25\, h^{-1}\, {\rm Mpc})^3$ volume realizations with varying cosmology, initial random field, stellar and active galactic nucleus (AGN) feedback strength and subgrid model implementation methods. We show that baryonic physics affects matter clustering on scales $k \gtrsim 0.4\, h\, \mathrm{Mpc}^{-1}$ and the magnitude of this effect is dependent on the details of the galaxy formation implementation and variations of cosmological and astrophysical parameters. Increasing AGN feedback strength decreases halo baryon fractions and yields stronger suppression of power relative to N-body simulations, while stronger stellar feedback often results in weaker effects by suppressing black hole growth and therefore the impact of AGN feedback. We find a broad correlation between mean baryon fraction of massive haloes (M200c > 1013.5 M⊙) and suppression of matter clustering but with significant scatter compared to previous work owing to wider exploration of feedback parameters and cosmic variance effects. We show that a random forest regressor trained on the baryon content and abundance of haloes across the full mass range 1010 ≤ Mhalo/M⊙<1015 can predict the effect of galaxy formation on the matter power spectrum on scales k = 1.0–20.0 $h\, \mathrm{Mpc}^{-1}$.

     
    more » « less
  3. ABSTRACT

    The intrinsic alignment (IA) of observed galaxy shapes with the underlying cosmic web is a source of contamination in weak lensing surveys. Sensitive methods to identify the IA signal will therefore need to be included in the upcoming weak lensing analysis pipelines. Hydrodynamical cosmological simulations allow us to directly measure the intrinsic ellipticities of galaxies, and thus provide a powerful approach to predict and understand the IA signal. Here we employ the novel, large-volume hydrodynamical simulation MTNG740, a product of the MillenniumTNG (MTNG) project, to study the IA of galaxies. We measure the projected correlation functions between the intrinsic shape/shear of galaxies and various tracers of large-scale structure, w+g, w+m, w++ over the radial range $r_{\rm p} \in [0.02 , 200]\, h^{-1}{\rm Mpc}$ and at redshifts z = 0.0, 0.5, and 1.0. We detect significant signal-to-noise IA signals with the density field for both elliptical and spiral galaxies. We also find significant intrinsic shear–shear correlations for ellipticals. We further examine correlations of the intrinsic shape of galaxies with the local tidal field. Here we find a significant IA signal for elliptical galaxies assuming a linear model. We also detect a weak IA signal for spiral galaxies under a quadratic tidal torquing model. Lastly, we measure the alignment between central galaxies and their host dark-matter haloes, finding small to moderate misalignments between their principal axes that decline with halo mass.

     
    more » « less
  4. ABSTRACT

    We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package baccoemu to accelerate the evaluation of the baryonic non-linear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the next-generation large-scale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a ∼2σ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $M_c \gt 10^{13.2} \, h^{-1} \, \mathrm{M}_{\odot }$ (95 per cent C.L.). The best-fitting baryonic suppression is $\sim 5{{\ \rm per\ cent}}$ at $k=1.0 \, {\rm Mpc}\ h^{-1}$ and $\sim 15{{\ \rm per\ cent}}$ at $k=5.0 \, {\rm Mpc} \ h^{-1}$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments.

     
    more » « less
  5. ABSTRACT

    Luminous red galaxies (LRGs) and blue star-forming emission-line galaxies (ELGs) are key tracers of large-scale structure used by cosmological surveys. Theoretical predictions for such data are often done via simplistic models for the galaxy–halo connection. In this work, we use the large, high-fidelity hydrodynamical simulation of the MillenniumTNG project (MTNG) to inform a new phenomenological approach for obtaining an accurate and flexible galaxy-halo model on small scales. Our aim is to study LRGs and ELGs at two distinct epochs, z = 1 and z = 0, and recover their clustering down to very small scales, $r \sim 0.1 \ h^{-1}\, {\rm Mpc}$, i.e. the one-halo regime, while a companion paper extends this to a two-halo model for larger distances. The occupation statistics of ELGs in MTNG inform us that (1) the satellite occupations exhibit a slightly super-Poisson distribution, contrary to commonly made assumptions, and (2) that haloes containing at least one ELG satellite are twice as likely to host a central ELG. We propose simple recipes for modelling these effects, each of which calls for the addition of a single free parameter to simpler halo occupation models. To construct a reliable satellite population model, we explore the LRG and ELG satellite radial and velocity distributions and compare them with those of subhaloes and particles in the simulation. We find that ELGs are anisotropically distributed within haloes, which together with our occupation results provides strong evidence for cooperative galaxy formation (manifesting itself as one-halo galaxy conformity); i.e. galaxies with similar properties form in close proximity to each other. Our refined galaxy-halo model represents a useful improvement of commonly used analysis tools and thus can be of help to increase the constraining power of large-scale structure surveys.

     
    more » « less