skip to main content


Title: Pursuing Quantum Difference Equations II: 3D mirror symmetry
Abstract

Let $\textsf {X}$ and $\textsf {X}^{!}$ be a pair of symplectic varieties dual with respect to 3D mirror symmetry. The $K$-theoretic limit of the elliptic duality interface is an equivariant $K$-theory class $\mathfrak {m} \in K(\textsf {X}\times \textsf {X}^{!})$. We show that this class provides correspondences $$ \begin{align*} & \Phi_{\mathfrak{m}}: K(\textsf{X}) \leftrightarrows K(\textsf{X}^{!}) \end{align*}$$mapping the $K$-theoretic stable envelopes to the $K$-theoretic stable envelopes. This construction allows us to relate various representation theoretic objects of $K(\textsf {X})$, such as action of quantum groups, quantum dynamical Weyl groups, $R$-matrices, etc., to those for $K(\textsf {X}^{!})$. In particular, we relate the wall $R$-matrices of $\textsf {X}$ to the $R$-matrices of the dual variety $\textsf {X}^{!}$. As an example, we apply our results to $\textsf {X}=\textrm {Hilb}^{n}({{\mathbb {C}}}^2)$—the Hilbert scheme of $n$ points in the complex plane. In this case, we arrive at the conjectures of Gorsky and Negut from [10].

 
more » « less
Award ID(s):
2054527
NSF-PAR ID:
10433249
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2023
Issue:
15
ISSN:
1073-7928
Page Range / eLocation ID:
p. 13290-13331
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the family of irreducible modules for quantum affineđ”°âąđ”©n+1{\mathfrak{sl}_{n+1}}whose Drinfeld polynomials are supported on just one node of the Dynkin diagram. We identify all the prime modules in this family and prove a unique factorization theorem. The Drinfeld polynomials of the prime modules encode information coming from the points of reducibility of tensor products of the fundamental modules associated toAm{A_{m}}withm≀n{m\leq n}. These prime modules are a special class of the snake modules studied by Mukhin and Young. We relate our modules to the work of Hernandez and Leclerc and define generalizations of the category𝒞-{\mathscr{C}^{-}}. This leads naturally to the notion of an inflation of the corresponding Grothendieck ring. In the last section we show that the tensor product of a (higher order) Kirillov–Reshetikhin module with its dual always contains an imaginary module in its Jordan–Hölder series and give an explicit formula for its Drinfeld polynomial. Together with the results of [D. Hernandez and B. Leclerc,A cluster algebra approach toq-characters of Kirillov–Reshetikhin modules,J. Eur. Math. Soc. (JEMS) 18 2016, 5, 1113–1159] this gives examples of a product of cluster variables which are not in the span of cluster monomials. We also discuss the connection of our work with the examples arising from the work of [E. Lapid and A. MĂ­nguez,Geometric conditions for□\square-irreducibility of certain representations of the general linear group over a non-archimedean local field,Adv. Math. 339 2018, 113–190]. Finally, we use our methods to give a family of imaginary modules in typeD4{D_{4}}which do not arise from an embedding ofAr{A_{r}}withr≀3{r\leq 3}inD4{D_{4}}.

     
    more » « less
  2. Abstract We consider a pair of quiver varieties $(X;X^{\prime})$ related by 3D mirror symmetry, where $X =T^*{Gr}(k,n)$ is the cotangent bundle of the Grassmannian of $k$-planes of $n$-dimensional space. We give formulas for the elliptic stable envelopes on both sides. We show an existence of an equivariant elliptic cohomology class on $X \times X^{\prime} $ (the mother function) whose restrictions to $X$ and $X^{\prime} $ are the elliptic stable envelopes of those varieties. This implies that the restriction matrices of the elliptic stable envelopes for $X$ and $X^{\prime}$ are equal after transposition and identification of the equivariant parameters on one side with the KĂ€hler parameters on the dual side. 
    more » « less
  3. Abstract

    Let $k \leq n$ be positive integers, and let $X_n = (x_1, \dots , x_n)$ be a list of $n$ variables. The Boolean product polynomial$B_{n,k}(X_n)$ is the product of the linear forms $\sum _{i \in S} x_i$, where $S$ ranges over all $k$-element subsets of $\{1, 2, \dots , n\}$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $B_{n,k}(X_n)$ for certain $k$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $B_{n,n-1}(X_n)$ to a bigraded action of the symmetric group ${\mathfrak{S}}_n$ on a divergence free quotient of superspace.

     
    more » « less
  4. This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ⁥ ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ⁥ ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ⁥ ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ⁥ ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≀ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
    more » « less
  5. Abstract

    Let$$\phi $$ϕbe a positive map from the$$n\times n$$n×nmatrices$$\mathcal {M}_n$$Mnto the$$m\times m$$m×mmatrices$$\mathcal {M}_m$$Mm. It is known that$$\phi $$ϕis 2-positive if and only if for all$$K\in \mathcal {M}_n$$K∈Mnand all strictly positive$$X\in \mathcal {M}_n$$X∈Mn,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ϕ(K∗X-1K)â©ŸÏ•(K)∗ϕ(X)-1ϕ(K). This inequality is not generally true if$$\phi $$ϕis merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$Tr[ϕ(K∗X-1K)]â©ŸTr[ϕ(K)∗ϕ(X)-1ϕ(K)]holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.

     
    more » « less