Complex Swift Hohenberg equation (CSHE) has attracted intensive research interest over the years, as it enables realistic modeling of mode-locked lasers with saturable absorbers by adding a fourth-order term to the spectral response. Many researchers have reported a variety of numerical solutions of CSHE which reveal interesting pulse patterns and structures. In this work, we have demonstrated a CSHE dissipative soliton fiber laser experimentally using a unique spectral filter with a complicated transmission profile. The behavior and performance of the laser agree qualitatively with the numerical simulations based on CSHE. Our findings bring insight into dissipative soliton dynamics and make our mode-locked laser a powerful testbed for observing dissipative solitons of CSHE, which may open a new course in ultrafast fiber laser research.
Various dissipative soliton solutions exist in the parameter space of mode-locked fiber lasers, including both coherent and incoherent pulses. Novel ultrafast laser designs can lead to distinctive dissipative soliton solutions formed by unique pulse shaping dynamics in the same cavity. However, transitionary states in between steady-state mode-locked regimes remain largely unexplored. Here, we investigate the intermediate transition dynamics in a versatile Tm-doped fiber laser capable of emitting both dissipative solitons with anomalous-dispersion and normal-dispersion pulse-shaping mechanisms by adjusting an intracavity polarization controller. Real-time pulse dynamics during mode-locking transitions are analyzed with a modified dispersive Fourier transform setup, illustrating characteristic pulse shaping mechanisms typically reserved for different dispersion regimes. Combined with a spectral intensity correlation analysis, the coherence evolution between two distinct mode-locked states is fully resolved for the first time.
more » « less- NSF-PAR ID:
- 10433259
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 31
- Issue:
- 16
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 25850
- Size(s):
- Article No. 25850
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Optical frequency combs in microresonators (microcombs) have a wide range of applications in science and technology, due to its compact size and access to considerably larger comb spacing. Despite recent successes, the problems of self-starting, high mode efficiency as well as high output power have not been fully addressed for conventional soliton microcombs. Recent demonstration of laser cavity soliton microcombs by nesting a microresonator into a fiber cavity, shows great potential to solve the problems. Here we study the dissipative soliton generation and interaction dynamics in a microresonator-filtered fiber laser in both theory and experiment. We bring theoretical insight into the mode-locking principle, discuss the parameters effect on soliton properties, and provide experimental guidelines for broadband soliton generation. We predict chirped bright dissipative soliton with flat-top spectral envelope in microresonators with normal dispersion, which is fundamentally forbidden for the externally driven case. Furthermore, we experimentally achieve soliton microcombs with large bandwidth of ~10 nm and high mode efficiency of 90.7%. Finally, by taking advantage of an ultrahigh-speed time magnifier, we study the real-time soliton formation and interaction dynamics and experimentally observe soliton Newton’s cradle. Our study will benefit the design of the novel, high-efficiency and self-starting microcombs for real-world applications.
-
Abstract Dissipative Kerr solitons in resonant frequency combs offer a promising route for ultrafast mode-locking, precision spectroscopy and time-frequency standards. The dynamics for the dissipative soliton generation, however, are intrinsically intertwined with thermal nonlinearities, limiting the soliton generation parameter map and statistical success probabilities of the solitary state. Here, via use of an auxiliary laser heating approach to suppress thermal dragging dynamics in dissipative soliton comb formation, we demonstrate stable Kerr soliton singlet formation and soliton bursts. First, we access a new soliton existence range with an inverse-sloped Kerr soliton evolution—diminishing soliton energy with increasing pump detuning. Second, we achieve deterministic transitions from Turing-like comb patterns directly into the dissipative Kerr soliton singlet pulse bypassing the chaotic states. This is achieved by avoiding subcomb overlaps at lower pump power, with near-identical singlet soliton comb generation over twenty instances. Third, with the red-detuned pump entrance route enabled, we uncover unique spontaneous soliton bursts in the direct formation of low-noise optical frequency combs from continuum background noise. The burst dynamics are due to the rapid entry and mutual attraction of the pump laser into the cavity mode, aided by the auxiliary laser and matching well with our numerical simulations. Enabled by the auxiliary-assisted frequency comb dynamics, we demonstrate an application of automatic soliton comb recovery and long-term stabilization against strong external perturbations. Our findings hold potential to expand the parameter space for ultrafast nonlinear dynamics and precision optical frequency comb stabilization.
-
Spatiotemporal mode-locking in a laser with anomalous dispersion is investigated. Mode-locked states with varying modal content can be observed, but we find it difficult to observe highly-multimode states. We describe the properties of these mode-locked states and compare them to the results of numerical simulations. Prospects for the generation of highly-multimode states and lasers based on multimode soliton formation are discussed.
-
Abstract Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic switching – in nonlinear measurements and theory. To understand the breather solitons, we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their stability-existence zones.