skip to main content


Title: Higher-order error estimates for physics-informed neural networks approximating the primitive equations
Abstract

Large-scale dynamics of the oceans and the atmosphere are governed by primitive equations (PEs). Due to the nonlinearity and nonlocality, the numerical study of the PEs is generally challenging. Neural networks have been shown to be a promising machine learning tool to tackle this challenge. In this work, we employ physics-informed neural networks (PINNs) to approximate the solutions to the PEs and study the error estimates. We first establish the higher-order regularity for the global solutions to the PEs with either full viscosity and diffusivity, or with only the horizontal ones. Such a result for the case with only the horizontal ones is new and required in the analysis under the PINNs framework. Then we prove the existence of two-layer tanh PINNs of which the corresponding training error can be arbitrarily small by taking the width of PINNs to be sufficiently wide, and the error between the true solution and its approximation can be arbitrarily small provided that the training error is small enough and the sample set is large enough. In particular, all the estimates area priori, and our analysis includes higher-order (in spatial Sobolev norm) error estimates. Numerical results on prototype systems are presented to further illustrate the advantage of using the$$H^s$$Hsnorm during the training.

 
more » « less
Award ID(s):
2111303 1953035
NSF-PAR ID:
10433266
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Partial Differential Equations and Applications
Volume:
4
Issue:
4
ISSN:
2662-2963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Finite volume, weighted essentially non-oscillatory (WENO) schemes require the computation of a smoothness indicator. This can be expensive, especially in multiple space dimensions. We consider the use of the simple smoothness indicator$$\sigma ^{\textrm{S}}= \frac{1}{N_{\textrm{S}}-1}\sum _{j} ({\bar{u}}_{j} - {\bar{u}}_{m})^2$$σS=1NS-1j(u¯j-u¯m)2, where$$N_{\textrm{S}}$$NSis the number of mesh elements in the stencil,$${\bar{u}}_j$$u¯jis the local function average over mesh elementj, and indexmgives the target element. Reconstructions utilizing standard WENO weighting fail with this smoothness indicator. We develop a modification of WENO-Z weighting that gives a reliable and accurate reconstruction of adaptive order, which we denote as SWENOZ-AO. We prove that it attains the order of accuracy of the large stencil polynomial approximation when the solution is smooth, and drops to the order of the small stencil polynomial approximations when there is a jump discontinuity in the solution. Numerical examples in one and two space dimensions on general meshes verify the approximation properties of the reconstruction. They also show it to be about 10 times faster in two space dimensions than reconstructions using the classic smoothness indicator. The new reconstruction is applied to define finite volume schemes to approximate the solution of hyperbolic conservation laws. Numerical tests show results of the same quality as standard WENO schemes using the classic smoothness indicator, but with an overall speedup in the computation time of about 3.5–5 times in 2D tests. Moreover, the computational efficiency (CPU time versus error) is noticeably improved.

     
    more » « less
  2. Abstract

    We give sharp conditions for the large time asymptotic simplification of aggregation-diffusion equations with linear diffusion. As soon as the interaction potential is bounded and its first and second derivatives decay fast enough at infinity, then the linear diffusion overcomes its effect, either attractive or repulsive, for large times independently of the initial data, and solutions behave like the fundamental solution of the heat equation with some rate. The potential$$W(x) \sim \log |x|$$W(x)log|x|for$$|x| \gg 1$$|x|1appears as the natural limiting case when the intermediate asymptotics change. In order to obtain such a result, we produce uniform-in-time estimates in a suitable rescaled change of variables for the entropy, the second moment, Sobolev norms and the$$C^\alpha $$Cαregularity with a novel approach for this family of equations using modulus of continuity techniques.

     
    more » « less
  3. Abstract

    Stochastic networks for the clock were identified by ensemble methods using genetic algorithms that captured the amplitude and period variation in single cell oscillators ofNeurosporacrassa. The genetic algorithms were at least an order of magnitude faster than ensemble methods using parallel tempering and appeared to provide a globally optimum solution from a random start in the initial guess of model parameters (i.e., rate constants and initial counts of molecules in a cell). The resulting goodness of fit$${x}^{2}$$x2was roughly halved versus solutions produced by ensemble methods using parallel tempering, and the resulting$${x}^{2}$$x2per data point was only$${\chi }^{2}/n$$χ2/n= 2,708.05/953 = 2.84. The fitted model ensemble was robust to variation in proxies for “cell size”. The fitted neutral models without cellular communication between single cells isolated by microfluidics provided evidence for onlyoneStochastic Resonance at one common level of stochastic intracellular noise across days from 6 to 36 h of light/dark (L/D) or in a D/D experiment. When the light-driven phase synchronization was strong as measured by the Kuramoto (K), there was degradation in the single cell oscillations away from the stochastic resonance. The rate constants for the stochastic clock network are consistent with those determined on a macroscopic scale of 107cells.

     
    more » « less
  4. Abstract

    Given a suitable solutionV(tx) to the Korteweg–de Vries equation on the real line, we prove global well-posedness for initial data$$u(0,x) \in V(0,x) + H^{-1}(\mathbb {R})$$u(0,x)V(0,x)+H-1(R). Our conditions onVdo include regularity but do not impose any assumptions on spatial asymptotics. We show that periodic profiles$$V(0,x)\in H^5(\mathbb {R}/\mathbb {Z})$$V(0,x)H5(R/Z)satisfy our hypotheses. In particular, we can treat localized perturbations of the much-studied periodic traveling wave solutions (cnoidal waves) of KdV. In the companion paper Laurens (Nonlinearity. 35(1):343–387, 2022.https://doi.org/10.1088/1361-6544/ac37f5) we show that smooth step-like initial data also satisfy our hypotheses. We employ the method of commuting flows introduced in Killip and Vişan (Ann. Math. (2) 190(1):249–305, 2019.https://doi.org/10.4007/annals.2019.190.1.4) where$$V\equiv 0$$V0. In that setting, it is known that$$H^{-1}(\mathbb {R})$$H-1(R)is sharp in the class of$$H^s(\mathbb {R})$$Hs(R)spaces.

     
    more » « less
  5. Abstract

    Consider two half-spaces$$H_1^+$$H1+and$$H_2^+$$H2+in$${\mathbb {R}}^{d+1}$$Rd+1whose bounding hyperplanes$$H_1$$H1and$$H_2$$H2are orthogonal and pass through the origin. The intersection$${\mathbb {S}}_{2,+}^d:={\mathbb {S}}^d\cap H_1^+\cap H_2^+$$S2,+d:=SdH1+H2+is a spherical convex subset of thed-dimensional unit sphere$${\mathbb {S}}^d$$Sd, which contains a great subsphere of dimension$$d-2$$d-2and is called a spherical wedge. Choosenindependent random points uniformly at random on$${\mathbb {S}}_{2,+}^d$$S2,+dand consider the expected facet number of the spherical convex hull of these points. It is shown that, up to terms of lower order, this expectation grows like a constant multiple of$$\log n$$logn. A similar behaviour is obtained for the expected facet number of a homogeneous Poisson point process on$${\mathbb {S}}_{2,+}^d$$S2,+d. The result is compared to the corresponding behaviour of classical Euclidean random polytopes and of spherical random polytopes on a half-sphere.

     
    more » « less