skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A marker-based neural network system for extracting social determinants of health
Abstract ObjectiveThe impact of social determinants of health (SDoH) on patients’ healthcare quality and the disparity is well known. Many SDoH items are not coded in structured forms in electronic health records. These items are often captured in free-text clinical notes, but there are limited methods for automatically extracting them. We explore a multi-stage pipeline involving named entity recognition (NER), relation classification (RC), and text classification methods to automatically extract SDoH information from clinical notes. Materials and MethodsThe study uses the N2C2 Shared Task data, which were collected from 2 sources of clinical notes: MIMIC-III and University of Washington Harborview Medical Centers. It contains 4480 social history sections with full annotation for 12 SDoHs. In order to handle the issue of overlapping entities, we developed a novel marker-based NER model. We used it in a multi-stage pipeline to extract SDoH information from clinical notes. ResultsOur marker-based system outperformed the state-of-the-art span-based models at handling overlapping entities based on the overall Micro-F1 score performance. It also achieved state-of-the-art performance compared with the shared task methods. Our approach achieved an F1 of 0.9101, 0.8053, and 0.9025 for Subtasks A, B, and C, respectively. ConclusionsThe major finding of this study is that the multi-stage pipeline effectively extracts SDoH information from clinical notes. This approach can improve the understanding and tracking of SDoHs in clinical settings. However, error propagation may be an issue and further research is needed to improve the extraction of entities with complex semantic meanings and low-frequency entities. We have made the source code available at https://github.com/Zephyr1022/SDOH-N2C2-UTSA.  more » « less
Award ID(s):
2145357
PAR ID:
10433287
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of the American Medical Informatics Association
Volume:
30
Issue:
8
ISSN:
1067-5027
Format(s):
Medium: X Size: p. 1398-1407
Size(s):
p. 1398-1407
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectiveExtracting social determinants of health (SDoHs) from medical notes depends heavily on labor-intensive annotations, which are typically task-specific, hampering reusability and limiting sharing. Here, we introduce SDoH-GPT, a novel framework leveraging few-shot learning large language models (LLMs) to automate the extraction of SDoH from unstructured text, aiming to improve both efficiency and generalizability. Materials and MethodsSDoH-GPT is a framework including the few-shot learning LLM methods to extract the SDoH from medical notes and the XGBoost classifiers which continue to classify SDoH using the annotations generated by the few-shot learning LLM methods as training datasets. The unique combination of the few-shot learning LLM methods with XGBoost utilizes the strength of LLMs as great few shot learners and the efficiency of XGBoost when the training dataset is sufficient. Therefore, SDoH-GPT can extract SDoH without relying on extensive medical annotations or costly human intervention. ResultsOur approach achieved tenfold and twentyfold reductions in time and cost, respectively, and superior consistency with human annotators measured by Cohen's kappa of up to 0.92. The innovative combination of LLM and XGBoost can ensure high accuracy and computational efficiency while consistently maintaining 0.90+ AUROC scores. DiscussionThis study has verified SDoH-GPT on three datasets and highlights the potential of leveraging LLM and XGBoost to revolutionize medical note classification, demonstrating its capability to achieve highly accurate classifications with significantly reduced time and cost. ConclusionThe key contribution of this study is the integration of LLM with XGBoost, which enables cost-effective and high quality annotations of SDoH. This research sets the stage for SDoH can be more accessible, scalable, and impactful in driving future healthcare solutions. 
    more » « less
  2. An important task for Information Extraction from Microblogs is Named Entity Recognition (NER) that extracts mentions of real-world entities from microblog messages and meta-information like entity type for better entity characterization. A lot of microblog NER systems have rightly sought to prioritize modeling the non-literary nature of microblog text. These systems are trained on offline static datasets and extract a combination of surface-level features – orthographic, lexical, and semantic – from individual messages for noisy text modeling and entity extraction. But given the constantly evolving nature of microblog streams, detecting all entity mentions from such varying yet limited context in short messages remains a difficult problem to generalize. In this paper, we propose the NER Globalizer pipeline better suited for NER on microblog streams. It characterizes the isolated message processing by existing NER systems as modeling local contextual embeddings, where learned knowledge from the immediate context of a message is used to suggest seed entity candidates. Additionally, it recognizes that messages within a microblog stream are topically related and often repeat mentions of the same entity. This suggests building NER systems that go beyond localized processing. By leveraging occurrence mining, the proposed system therefore follows up traditional NER modeling by extracting additional mentions of seed entity candidates that were previously missed. Candidate mentions are separated into well-defined clusters which are then used to generate a pooled global embedding drawn from the collective context of the candidate within a stream. The global embeddings are utilized to separate false positives from entities whose mentions are produced in the final NER output. Our experiments show that the proposed NER system exhibits superior effectiveness on multiple NER datasets with an average Macro F1 improvement of 47.04% over the best NER baseline while adding only a small computational overhead. 
    more » « less
  3. Chemical patents are an essential source of information about novel chemicals and chemical reactions. However, with the increasing volume of such patents, mining information about these chemicals and chemical reactions has become a time-intensive and laborious endeavor. In this study, we present a system to extract chemical reaction events from patents automatically. Our approach consists of two steps: 1) named entity recognition (NER)—the automatic identification of chemical reaction parameters from the corresponding text, and 2) event extraction (EE)—the automatic classifying and linking of entities based on their relationships to each other. For our NER system, we evaluate bidirectional long short-term memory (BiLSTM)-based and bidirectional encoder representations from transformer (BERT)-based methods. For our EE system, we evaluate BERT-based, convolutional neural network (CNN)-based, and rule-based methods. We evaluate our NER and EE components independently and as an end-to-end system, reporting the precision, recall, and F 1 score. Our results show that the BiLSTM-based method performed best at identifying the entities, and the CNN-based method performed best at extracting events. 
    more » « less
  4. Luo, Ling; Recupero, Diego Reforgiato (Ed.)
    Clinician notes are a rich source of patient information, but often contain inconsistencies due to varied writing styles, abbreviations, medical jargon, grammatical errors, and non-standard formatting. These inconsistencies hinder their direct use in patient care and degrade the performance of downstream computational applications that rely on these notes as input, such as quality improvement, population health analytics, precision medicine, clinical decision support, and research. We present a large-language-model (LLM) approach to the preprocessing of 1618 neurology notes. The LLM corrected spelling and grammatical errors, expanded acronyms, and standardized terminology and formatting, without altering clinical content. Expert review of randomly sampled notes confirmed that no significant information was lost. To evaluate downstream impact, we applied an ontology-based NLP pipeline (Doc2Hpo) to extract biomedical concepts from the notes before and after editing. F1 scores for Human Phenotype Ontology extraction improved from 0.40 to 0.61, confirming our hypothesis that better inputs yielded better outputs. We conclude that LLM-based preprocessing is an effective error correction strategy that improves data quality at the level of free text in clinical notes. This approach may enhance the performance of a broad class of downstream applications that derive their input from unstructured clinical documentation. 
    more » « less
  5. Abstract BackgroundWhile most health-care providers now use electronic health records (EHRs) to document clinical care, many still treat them as digital versions of paper records. As a result, documentation often remains unstructured, with free-text entries in progress notes. This limits the potential for secondary use and analysis, as machine-learning and data analysis algorithms are more effective with structured data. ObjectiveThis study aims to use advanced artificial intelligence (AI) and natural language processing (NLP) techniques to improve diagnostic information extraction from clinical notes in a periodontal use case. By automating this process, the study seeks to reduce missing data in dental records and minimize the need for extensive manual annotation, a long-standing barrier to widespread NLP deployment in dental data extraction. Materials and MethodsThis research utilizes large language models (LLMs), specifically Generative Pretrained Transformer 4, to generate synthetic medical notes for fine-tuning a RoBERTa model. This model was trained to better interpret and process dental language, with particular attention to periodontal diagnoses. Model performance was evaluated by manually reviewing 360 clinical notes randomly selected from each of the participating site’s dataset. ResultsThe results demonstrated high accuracy of periodontal diagnosis data extraction, with the sites 1 and 2 achieving a weighted average score of 0.97-0.98. This performance held for all dimensions of periodontal diagnosis in terms of stage, grade, and extent. DiscussionSynthetic data effectively reduced manual annotation needs while preserving model quality. Generalizability across institutions suggests viability for broader adoption, though future work is needed to improve contextual understanding. ConclusionThe study highlights the potential transformative impact of AI and NLP on health-care research. Most clinical documentation (40%-80%) is free text. Scaling our method could enhance clinical data reuse. 
    more » « less