skip to main content


Title: Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries
We study the question of when we can provide direct access to the k-th answer to a Conjunctive Query (CQ) according to a specified order over the answers in time logarithmic in the size of the database, following a preprocessing step that constructs a data structure in time quasilinear in database size. Specifically, we embark on the challenge of identifying the tractable answer orderings , that is, those orders that allow for such complexity guarantees. To better understand the computational challenge at hand, we also investigate the more modest task of providing access to only a single answer (i.e., finding the answer at a given position), a task that we refer to as the selection problem , and ask when it can be performed in quasilinear time. We also explore the question of when selection is indeed easier than ranked direct access. We begin with lexicographic orders . For each of the two problems, we give a decidable characterization (under conventional complexity assumptions) of the class of tractable lexicographic orders for every CQ without self-joins. We then continue to the more general orders by the sum of attribute weights and establish the corresponding decidable characterizations, for each of the two problems, of the tractable CQs without self-joins. Finally, we explore the question of when the satisfaction of Functional Dependencies (FDs) can be utilized for tractability and establish the corresponding generalizations of our characterizations for every set of unary FDs.  more » « less
Award ID(s):
1762268 1956096
PAR ID:
10433350
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Database Systems
Volume:
48
Issue:
1
ISSN:
0362-5915
Page Range / eLocation ID:
1 to 45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the question of when we can provide logarithmic-time direct access to the 𝑘-th answer to a Conjunctive Query (CQ) with a specified ordering over the answers, following a preprocessing step that constructs a data structure in time quasilinear in the size of the database. Specifically, we embark on the challenge of identifying the tractable answer orderings that allow for ranked direct access with such complexity guarantees. We begin with lexicographic orderings and give a decidable characterization (under conventional complexity assumptions) of the class of tractable lexicographic orderings for every CQ without self-joins. We then continue to the more general orderings by the sum of attribute weights and show for it that ranked direct access is tractable only in trivial cases. Hence, to better understand the computational challenge at hand, we consider the more modest task of providing access to only a single answer (i.e., finding the answer at a given position) — a task that we refer to as the selection problem. We indeed achieve a quasilinear-time algorithm for a subset of the class of full CQs without self-joins, by adopting a solution of Frederickson and Johnson to the classic problem of selection over sorted matrices. We further prove that none of the other queries in this class admit such an algorithm. 
    more » « less
  2. We study theta-joins in general and join predicates with conjunctions and disjunctions of inequalities in particular, focusing on ranked enumeration where the answers are returned incrementally in an order dictated by a given ranking function. Our approach achieves strong time and space complexity properties: with n denoting the number of tuples in the database, we guarantee for acyclic full join queries with inequality conditions that for every value of k , the k top-ranked answers are returned in O ( n polylog n + k log k ) time. This is within a polylogarithmic factor of O ( n + k log k ), i.e., the best known complexity for equi-joins, and even of O ( n + k ), i.e., the time it takes to look at the input and return k answers in any order. Our guarantees extend to join queries with selections and many types of projections (namely those called "free-connex" queries and those that use bag semantics). Remarkably, they hold even when the number of join results is n ℓ for a join of ℓ relations. The key ingredient is a novel O ( n polylog n )-size factorized representation of the query output , which is constructed on-the-fly for a given query and database. In addition to providing the first nontrivial theoretical guarantees beyond equi-joins, we show in an experimental study that our ranked-enumeration approach is also memory-efficient and fast in practice, beating the running time of state-of-the-art database systems by orders of magnitude. 
    more » « less
  3. Abstract

    Explaining the maintenance of genetic variation in fitness‐related traits within populations is a fundamental challenge in ecology and evolutionary biology. Frequency‐dependent selection (FDS) is one mechanism that can maintain such variation, especially when selection favours rare variants (negative FDS). However, our general knowledge about the occurrence of FDS, its strength and direction remain fragmented, limiting general inferences about this important evolutionary process. We systematically reviewed the published literature on FDS and assembled a database of 747 effect sizes from 101 studies to analyse the occurrence, strength, and direction of FDS, and the factors that could explain heterogeneity in FDS. Using a meta‐analysis, we found that overall, FDS is more commonly negative, although not significantly when accounting for phylogeny. An analysis of absolute values of effect sizes, however, revealed the widespread occurrence of modest FDS. However, negative FDS was only significant in laboratory experiments and non‐significant in mesocosms and field‐based studies. Moreover, negative FDS was stronger in studies measuring fecundity and involving resource competition over studies using other fitness components or focused on other ecological interactions. Our study unveils key general patterns of FDS and points in future promising research directions that can help us understand a long‐standing fundamental problem in evolutionary biology and its consequences for demography and ecological dynamics.

     
    more » « less
  4. Ranked enumeration is a query-answering paradigm where the query answers are returned incrementally in order of importance (instead of returning all answers at once). Importance is defined by a ranking function that can be specific to the application, but typically involves either a lexicographic order (e.g., ORDER BY R.A, S.B in SQL) or a weighted sum of attributes (e.g., ORDER BY 3*R.A + 2*S.B). Recent work has introduced any-k algorithms for (multi-way) join queries, which push ranking into joins and avoid materializing intermediate results until necessary. The top-ranked answers are returned asymptotically faster than the common join-then-rank approach of database systems, resulting in orders-of-magnitude speedup in practice. 
    more » « less
  5. Cost-based query optimization remains a critical task in relational databases even after decades of research and industrial development. Query optimizers rely on a large range of statistical synopses for accurate cardinality estimation. As the complexity of selections and the number of join predicates increase, two problems arise. First, statistics cannot be incrementally composed to effectively estimate the cost of the sub-plans generated in plan enumeration. Second, small errors are propagated exponentially through joins, which can lead to severely sub-optimal plans. In this paper, we introduce COMPASS, a novel query optimization paradigm for in-memory databases based on a single type of statistics---Fast-AGMS sketches. In COMPASS, query optimization and execution are intertwined. Selection predicates and sketch updates are pushed-down and evaluated online during query optimization. This allows Fast-AGMS sketches to be computed only over the relevant tuples---which enhances cardinality estimation accuracy. Plan enumeration is performed over the query join graph by incrementally composing attribute-level sketches---not by building a separate sketch for every sub-plan. We prototype COMPASS in MapD -- an open-source parallel database -- and perform extensive experiments over the complete JOB benchmark. The results prove that COMPASS generates better execution plans -- both in terms of cardinality and runtime -- compared to four other database systems. Overall, COMPASS achieves a speedup ranging from 1.35X to 11.28X in cumulative query execution time over the considered competitors. Supplementary Material Read me (3448016.3452840_readme.pdf) Download 472.23 KB Source Code (3448016.3452840_source_code.zip) Download 6.94 MB MP4 File (3448016.3452840.mp4) Cost-based query optimization remains a critical task in relational databases even after decades of research and industrial development. Query optimizers rely on a large range of statistical synopses -- including attribute-level histograms and table-level samples -- for accurate cardinality estimation. As the complexity of selection predicates and the number of join predicates increase, two problems arise. First, statistics cannot be incrementally composed to effectively estimate the cost of the sub-plans generated in plan enumeration. Second, small errors are propagated exponentially through joins, which can lead to severely sub-optimal plans. In this paper, we introduce COMPASS, a novel query optimization paradigm for in-memory databases based on a single type of statistics---Fast-AGMS sketches. In COMPASS, query optimization and execution are intertwined. Selection predicates and sketch updates are pushed-down and evaluated online during query optimization. This allows Fast-AGMS sketches to be computed only over the relevant tuples---which enhances cardinality estimation accuracy. Plan enumeration is performed over the query join graph by incrementally composing attribute-level sketches---not by building a separate sketch for every sub-plan.We prototype COMPASS in MapD -- an open-source parallel database -- and perform extensive experiments over the complete JOB benchmark. The results prove the reduced overhead COMPASS incurs, while generating better execution plans -- both in terms of cardinality and runtime -- compared to four other database systems. Overall, COMPASS achieves a speedup ranging from 1.89X to 7.09X in cumulative query execution time over the considered competitors. Moreover, COMPASS is the only optimizer that consistently generates effective plans for complex queries with 10 or more joins. 
    more » « less