skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Effects of Cardamom Cultivation on Its Local Environment Using Novel Systems Thinking Approach-the Case of Indian Cardamom Hills
Intensive cardamom cultivation in Indian Cardamom hills (ICH) has been related to severe ecological and environmental implications that can challenge the long-term sustainability of cardamom. This research study and analysis proposes a novel system approach for sustainable agroecological production of cardamom in southern India. The effects of intensive cardamom cultivation on its forest environment had been significant. A considerable increase in surface air temperature was observed in the ICH during the last three decades (1990–2020). The climate of the Cardamom hill reserves (CHR) has a very high variability of daily cycles (surface air temperature and relative humidity) compared to low variability of yearly cycles, which helped minor and major pests and diseases occur and spread throughout the season. The current hydrothermal condition of the soil fostered the occurrence of soil insect pests, resulting in higher pesticide use. Epiphytes peculiar to the CHR forest have been eliminated due to repeated, intense shade lopping of each tree. Variability occurred in cardamom growth and development and yield can be attributed to changes in the microclimatic environment prevailing in the micro habitats of the sloping hillsides. This study has revealed the possible link and various dimensions between the intensive growing practices that were positively reflected in its local climate and production system. The 75% shade level under the cardamom canopy influences the cardamom microclimatic conditions, the relative humidity close proximity with panicles was maximum (88.9%), and the mean air temperature was minimum (18.4°C). On the contrary, the relative humidity at canopy top was reduced (78.7%) but the mean air temperature was still high (27.4°C). This study also suggests that future energy transfers in the CHR production system must be understood for improving the long-term agricultural sustainability of cardamom cultivation in the ICH.  more » « less
Award ID(s):
1735235
PAR ID:
10433382
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Sustainable Food Systems
Volume:
6
ISSN:
2571-581X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rainfall pattern seen in the Indian Cardamom Hills (ICH) has been extremely variable and complicated, with El Niño -Southern Oscillation (ENSO) playing a crucial role in shaping this pattern. In light of this, more investigation is required through improved statistical analysis. During the study period, there was greater variability in rainfall and the frequency of rainy days. About 2,730 mm of rainfall was reported in 2018, while the lowest amount (1168.3 mm) was registered for 2016. The largest decrease in decadal rainfall (>65 mm) was given by the decade 1960–1969, followed by 1980–1989 (>40 mm) and 2010–2019 (>10 mm). In the last 60 years of study, there has been a reduction of rainy days by 5 days in the last decade (2000–2009), but in the following decade (2010–2019), it registered an increasing trend, which is only slightly <2 days. The highest increase in decadal rainy days was observed for the 1970–1979 period. The smallest decadal increase was reported for the last decade (2010–2019). Total sunshine hours were the highest (1527.47) for the lowest rainfall year of 2016, while the lowest value (1,279) was recorded for the highest rainfall year (2021). The rainfall characteristics of ICH are highly influenced by the global ENSO phenomenon, both positively and negatively, depending on the global El Nino and La Nina conditions. Correspondingly, below and above-average rainfall was recorded consecutively for 1963–1973, 2003–2016, and 1970–2002. Higher bright forenoon sun hours occurred only during SWM months, which also reported maximum disease intensity on cardamom. The year 2016 was regarded as a poorly distributed year, with the lowest rainfall and the highest bright afternoon sun hours during the winter and summer months (January-May). Over the last three decades, the production and productivity of cardamom have shown a steady increase along with the ongoing local climatic change. Many of our statistical tests resulted in important information in support of temporal climatic change and variability. Maintaining shade levels is essential to address the adverse effects of increasing surface air temperature coupled with the downward trend of the number of rainy days and elevated soil temperature levels. 
    more » « less
  2. The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients. 
    more » « less
  3. The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients. 
    more » « less
  4. The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients. 
    more » « less
  5. The current network of temperature measurement sites are designed to represent spatial variability of air and soil temperature in rugged mountain topography, and serve as second-level stations to capture specific microclimate temperatures in conjunction with a network of Benchmark Meteorological Stations (MS001). The air and soil thermograph network has been reduced from the historical network of 37 sites originally established. Currently there are 10 measurement sites with two of these sites measuring relative humidity in addition to air and soil temperature. An original network of 19 sites (RS01-RS19) were established during the International Biome Program in the early 1970's. Emphasis on phenology, plant moisture stress, and leaf nutrient content led to extending this network of air and soil temperature measurement. A plant community classification system (Dyrness et al., 1971) was used as a primary means of stratification, and a set of permanent vegetation plots (Reference Stands) was installed to represent forest communities with distinct vegetation and hypothesized different environments (Dyrness et al., 1974). A thermograph network was installed within the reference stands in the early 1970's (Zobel et al., 1974), and vegetation standing crop, tree growth and mortality, and plant succession were also measured. The majority of these sites were established to monitor micro-meteorological data under the canopy. The purpose of this network was to provide air and soil temperature data for modeling photosynthesis, respiration, phenology, and decomposition, and to measure environmental gradients. 
    more » « less