skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent advances in wearable sensors and data analytics for continuous monitoring and analysis of biomarkers and symptoms related to COVID-19
The COVID-19 pandemic has changed the lives of many people around the world. Based on the available data and published reports, most people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. Considering that a substantial portion of them will progress to a severe disease requiring hospitalization and medical management, including respiratory and circulatory support in the form of supplemental oxygen therapy, mechanical ventilation, vasopressors, etc. The continuous monitoring of patient conditions at home for patients with COVID-19 will allow early determination of disease severity and medical intervention to reduce morbidity and mortality. In addition, this will allow early and safe hospital discharge and free hospital beds for patients who are in need of admission. In this review, we focus on the recent developments in next-generation wearable sensors capable of continuous monitoring of disease symptoms, particularly those associated with COVID-19. These include wearable non/minimally invasive biophysical (temperature, respiratory rate, oxygen saturation, heart rate, and heart rate variability) and biochemical (cytokines, cortisol, and electrolytes) sensors, sensor data analytics, and machine learning-enabled early detection and medical intervention techniques. Together, we aim to inspire the future development of wearable sensors integrated with data analytics, which serve as a foundation for disease diagnostics, health monitoring and predictions, and medical interventions.  more » « less
Award ID(s):
2113736
PAR ID:
10433388
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Biophysics Reviews
Volume:
4
Issue:
3
ISSN:
2688-4089
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Amid the COVID-19 pandemic, it has been reported that greater than 35% of patients with confirmed or suspected COVID-19 develop postacute sequelae of SARS CoV-2 (PASC). PASC is still a disease for which preliminary medical data are being collected—mostly measurements collected during hospital or clinical visits—and pathophysiological understanding is yet in its infancy. The disease is notable for its prevalence and its variable symptom presentation, and as such, management plans could be more holistically made if health care providers had access to unobtrusive home-based wearable and contactless continuous physiologic and physical sensor data. Such between-hospital or between-clinic data can quantitatively elucidate a majority of the temporal evolution of PASC symptoms. Although not universally of comparable accuracy to gold standard medical devices, home-deployed sensors offer great insights into the development and progression of PASC. Suitable sensors include those providing vital signs and activity measurements that correlate directly or by proxy to documented PASC symptoms. Such continuous, home-based data can give care providers contextualized information from which symptom exacerbation or relieving factors may be classified. Such data can also improve the collective academic understanding of PASC by providing temporally and activity-associated symptom cataloging. In this viewpoint, we make a case for the utilization of home-based continuous sensing that can serve as a foundation from which medical professionals and engineers may develop and pursue long-term mitigation strategies for PASC. 
    more » « less
  2. null (Ed.)
    The new coronavirus (now named SARS-CoV-2) causing the disease pandemic in 2019 (COVID-19), has so far infected over 35 million people worldwide and killed more than 1 million. Most people with COVID-19 have no symptoms or only mild symptoms. But some become seriously ill and need hospitalization. The sickest are admitted to an Intensive Care Unit (ICU) and may need mechanical ventilation to help them breath. Being able to predict which patients with COVID-19 will become severely ill could help hospitals around the world manage the huge influx of patients caused by the pandemic and save lives. Now, Hao, Sotudian, Wang, Xu et al. show that computer models using artificial intelligence technology can help predict which COVID-19 patients will be hospitalized, admitted to the ICU, or need mechanical ventilation. Using data of 2,566 COVID-19 patients from five Massachusetts hospitals, Hao et al. created three separate models that can predict hospitalization, ICU admission, and the need for mechanical ventilation with more than 86% accuracy, based on patient characteristics, clinical symptoms, laboratory results and chest x-rays. Hao et al. found that the patients’ vital signs, age, obesity, difficulty breathing, and underlying diseases like diabetes, were the strongest predictors of the need for hospitalization. Being male, having diabetes, cloudy chest x-rays, and certain laboratory results were the most important risk factors for intensive care treatment and mechanical ventilation. Laboratory results suggesting tissue damage, severe inflammation or oxygen deprivation in the body's tissues were important warning signs of severe disease. The results provide a more detailed picture of the patients who are likely to suffer from severe forms of COVID-19. Using the predictive models may help physicians identify patients who appear okay but need closer monitoring and more aggressive treatment. The models may also help policy makers decide who needs workplace accommodations such as being allowed to work from home, which individuals may benefit from more frequent testing, and who should be prioritized for vaccination when a vaccine becomes available. 
    more » « less
  3. Abstract Heart failure is a chronic disease, the symptoms of which occur due to a lack of cardiac output. It can be better managed with continuous and real time monitoring. Some efforts have been made in the past for the management of heart failure. Most of these efforts were based on a single parameter for example thoracic impedance or heart rate alone. Herein, we report a wearable device that can provide monitoring of multiple physiological parameters related to heart failure. It is based on the sensing of multiple parameters simultaneously including thoracic impedance, heart rate, electrocardiogram and motion activity. These parameters are measured using different sensors which are embedded in a wearable belt for their continuous and real time monitoring. The healthcare wearable device has been tested in different conditions including sitting, standing, laying, and walking. Results demonstrate that the reported wearable device keeps track of the aforementioned parameters in all conditions. 
    more » « less
  4. Continuous monitoring of perinatal women in a descriptive case study allowed us the opportunity to examine the time during which the COVID-19 infection led to physiological changes in two low-income pregnant women. An important component of this study was the use of a wearable sensor device, the Oura ring, to monitor and record vital physiological parameters during sleep. Two women in their second and third trimesters, respectively, were selected based on a positive COVID-19 diagnosis. Both women were tested using the polymerase chain reaction method to confirm the presence of the virus during which time we were able to collect these physiological data. In both cases, we observed 3–6 days of peak physiological changes in resting heart rate (HR), heart rate variability (HRV), and respiratory rate (RR), as well as sleep surrounding the onset of COVID-19 symptoms. The pregnant woman in her third trimester showed a significant increase in resting HR ( p = 0.006) and RR ( p = 0.048), and a significant decrease in HRV ( p = 0.027) and deep sleep duration ( p = 0.029). She reported experiencing moderate COVID-19 symptoms and did not require hospitalization. At 38 weeks of gestation, she had a normal delivery and gave birth to a healthy infant. The participant in her second trimester showed similar physiological changes during the 3-day peak period. Importantly, these changes appeared to return to the pre-peak levels. Common symptoms reported by both cases included loss of smell and nasal congestion, with one losing her sense of taste. Results suggest the potential to use the changes in cardiorespiratory responses and sleep for real-time monitoring of health and well-being during pregnancy. 
    more » « less
  5. Abstract Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables. 
    more » « less