Abstract Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free‐moving, entirely soft‐bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape‐morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real‐world applications for intricate and challenging tasks.
more »
« less
Recent advances in biomimetic soft robotics: fabrication approaches, driven strategies and applications
Compared to traditional rigid-bodied robots, soft robots are constructed using physically flexible/elastic bodies and electronics to mimic nature and enable novel applications in industry, healthcare, aviation, military, etc. Recently, the fabrication of robots on soft matter with great flexibility and compliance has enabled smooth and sophisticated ‘multi-degree-of-freedom’ 3D actuation to seamlessly interact with humans, other organisms and non-idealized environments in a highly complex and controllable manner. Herein, we summarize the fabrication approaches, driving strategies, novel applications, and future trends of soft robots. Firstly, we introduce the different fabrication approaches to prepare soft robots and compare and systematically discuss their advantages and disadvantages. Then, we present the actuator-based and material-based driving strategies of soft robotics and their characteristics. The representative applications of soft robotics in artificial intelligence, medicine, sensors, and engineering are summarized. Also, some remaining challenges and future perspectives in soft robotics are provided. This work highlights the recent advances of soft robotics in terms of functional material selection, structure design, control strategies and biomimicry, providing useful insights into the development of next-generation functional soft robotics.
more »
« less
- Award ID(s):
- 2004251
- PAR ID:
- 10433698
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 18
- Issue:
- 40
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7699 to 7734
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Soft robotics enriches the robotic functionalities by engineering soft materials and electronics toward enhanced compliance, adaptivity, and friendly human machine. This decade has witnessed extraordinary progresses and benefits in scaling down soft robotics to small scale for a wide range of potential and promising applications, including medical and surgical soft robots, wearable and rehabilitation robots, and unconstructed environments exploration. This perspective highlights recent research efforts in miniature soft robotics in a brief and comprehensive way in terms of actuation, powering, designs, fabrication, control, and applications in four sections. Section 2 discusses the key aspects of materials selection and structural designs for small‐scale tethered and untethered actuation and powering, including fluidic actuation, stimuli‐responsive actuation, and soft living biohybrid materials, as well as structural forms from 1D to 3D. Section 3 discusses the advanced manufacturing techniques at small scales for fabricating miniature soft robots, including lithography, mechanical self‐assembly, additive manufacturing, tissue engineering, and other fabrication methods. Section 4 discusses the control systems used in miniature robots, including off‐board/onboard controls and artificial intelligence‐based controls. Section 5 discusses their potential broad applications in healthcare, small‐scale objects manipulating and processing, and environmental monitoring. Finally, outlooks on the challenges and opportunities are discussed.more » « less
-
Soft robots, constructed from deformable materials, offer significant advantages over rigid robots by mimicking biological tissues and providing enhanced adaptability, safety, and functionality across various applications. Central to these robots are electroactive polymer (EAP) actuators, which allow large deformations in response to external stimuli. This review examines various EAP actuators, including dielectric elastomers, liquid crystal elastomers (LCEs), and ionic polymers, focusing on their potential as artificial muscles. EAPs, particularly ionic and electronic varieties, are noted for their high actuation strain, flexibility, lightweight nature, and energy efficiency, making them ideal for applications in mechatronics, robotics, and biomedical engineering. This review also highlights piezoelectric polymers like polyvinylidene fluoride (PVDF), known for their flexibility, biocompatibility, and ease of fabrication, contributing to tactile and pressure sensing in robotic systems. Additionally, conducting polymers, with their fast actuation speeds and high strain capabilities, are explored, alongside magnetic polymer composites (MPCs) with applications in biomedicine and electronics. The integration of machine learning (ML) and the Internet of Things (IoT) is transforming soft robotics, enhancing actuation, control, and design. Finally, the paper discusses future directions in soft robotics, focusing on self-healing composites, bio-inspired designs, sustainability, and the continued integration of IoT and ML for intelligent, adaptive, and responsive robotic systems.more » « less
-
Soft material robots are uniquely suited to address engineering challenges in extreme environments in new ways that traditional rigid robot embodiments cannot. Soft robot material flexibility, resistance to brittle fracture, low thermal conductivity, biostability, and self-healing capabilities present new solutions advantageous to specific environmental conditions. In this review, we examine the requirements for building and operating soft robots in various extreme environments, including within the human body, underwater, outer space, search and rescue sites, and confined spaces. We analyze the implementations of soft robotic devices, including actuators and sensors, which meet these requirements. Besides the structure of these devices, we explore ways to expand the use of soft robots in extreme environments with design optimization, control systems, and their future applications in educational and commercial products. We further discuss the current limitations of soft robots recognizing challenges to compliance, strength, and control. With this in mind, we present arguments for the future of robotics in which hybrid (rigid and soft) structures meet complex environmental needs.more » « less
-
Abstract Experiential learning in biomedical engineering curricula is a critical component to developing graduates who are equipped to contribute to technical design tasks in their careers. This paper presents the development and implementation of an undergraduate and graduate-level soft material robotics design course focused on applications in medical device design. The elective course, offered in a bioengineering department, includes modules on technical topics and hands-on projects relevant to readings, all situated within a human-centered design course. After learning and using first principles governing soft robot design and exploring literature in soft robotics, students propose a new advance in the field in a hands-on design and prototype project. The course described here aims to create a structure to engage students in fabrication and the design approaches taken by practitioners in a specific field, applied here in soft robotics, but applicable to other areas of biomedical engineering. This teaching tips article details the pedagogical tools used to facilitate design and collaboration within the course. Additionally, we aim to highlight ways in which the course creates (1) opportunities to engage undergraduates in design in preparation for capstone courses, (2) outward facing opportunities to connect with practitioners in the field, and (3) the ability to adapt this hands-on experience within a typical lecture structure as well as a hybrid online and in-person offering, thus expanding its utility in bioengineering departments. We reflect on course elements that can inform future design-based course offerings in soft robotics and other design-based multidisciplinary fields in bioengineering.more » « less