Abstract Biological systems have often been sources of inspiration for engineering design. Over the past decade, advances in soft robotics have enabled the development of bioinspired technology across a wide range of sizes and applications. When paired with recent advances in miniaturization and manufacturing techniques, soft robotics can be used to investigate the locomotion and bio-hydrodynamics of millimeter-scale swimmers that operate at intermediate Reynolds numbers (100–103). However, it is important to understand the kinematics and dynamics of biological model systems in order to leverage the true potential of bioinspired robots/devices. Ctenophores (comb jellies) are gelatinous marine invertebrates with soft bodies and flexible appendages composed of bundles of millimeter-long cilia; they are the largest animals in the world to locomote using cilia, with each appendage operating at a Reynolds number of approximately 102. Their efficiency, maneuverability, and ubiquity in the global ocean make them a potentially attractive candidate for bioinspired design applications. Each ctenophore has eight rows of paddle-like ciliary bundles (ctenes) that beat metachronally, with a phase lag between neighboring appendages, producing a “metachronal wave” that propagates along the row. This strategy, known as metachronal coordination, is also used by many other organisms (including crustaceans, annelids, and insects) to facilitate feeding, respiration, and locomotion. In general, the performance of a metachronal system depends on a large number of geometrical and dynamical parameters (e.g. beat frequency, phase lag, appendage length, appendage spacing, et al). However, it is unclear how these parameters interact to affect the hydrodynamics of the system overall. We take advantage of natural variation between different species of ctenophores to explore the role of beating frequency, body size, and propulsor spacing in metachronal systems. Using Particle Shadow Velocimetry (PSV), we compare velocity and vorticity fields generated by actively beating ctene rows in three distinct ctenophore species, across a range of beating frequencies and body shapes. Our findings show that ctenophores with more densely packed ctenes (i.e., closer propulsor spacing) generate more coherent flow fields compared to those with higher propulsor spacing at similar Reynolds numbers. Our results highlight the importance of subtle geometric/kinematic differences in driving fluid flow by flexible appendages, and provide a foundation for further investigation of the role of appendage spacing in metachronal coordination for both biological and bioinspired systems.
more »
« less
Numerical Study of Metachronal Wave‐Modulated Locomotion in Magnetic Cilia Carpets
Metachronal motions are ubiquitous in terrestrial and aquatic organisms and have attracted substantial attention in engineering for their potential applications. Hard‐magnetic soft materials are shown to provide new opportunities for metachronal wave‐modulated robotic locomotion by multi‐agent active morphing in response to external magnetic fields. However, the design and optimization of such magnetic soft robots can be complex, and the fabrication and magnetization processes are often delicate and time‐consuming. Herein, a computational model is developed that integrates granular models into a magnetic–lattice model, both of which are implemented in the highly efficient parallel computing platform large‐scale atomic/molecular massively parallel simulator (LAMMPS). The simulations accurately reproduce the deformation of single cilium, the metachronal wave motion of multiple cilia, and the crawling and rolling locomotion of magnetic cilia soft robots. Furthermore, the simulations provide insight into the spatial and temporal variation of friction forces and trajectories of cilia tips. The results contribute to the understanding of metachronal wave‐modulated locomotion and potential applications in the field of soft robotics and biomimetic engineering. The developed model also provides a versatile computational framework for simulating the movement of magnetic soft robots in realistic environments and has the potential to guide the design, optimization, and customization of these systems.
more »
« less
- Award ID(s):
- 1847149
- PAR ID:
- 10433900
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 5
- Issue:
- 10
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motile cilia are slender, hair-like cellular appendages that spontaneously oscillate under the action of internal molecular motors and are typically found in dense arrays. These active filaments coordinate their beating to generate metachronal waves that drive long-range fluid transport and locomotion. Until now, our understanding of their collective behavior largely comes from the study of minimal models that coarse grain the relevant biophysics and the hydrodynamics of slender structures. Here we build on a detailed biophysical model to elucidate the emergence of metachronal waves on millimeter scales from nanometer-scale motor activity inside individual cilia. Our study of a one-dimensional lattice of cilia in the presence of hydrodynamic and steric interactions reveals how metachronal waves are formed and maintained. We find that, in homogeneous beds of cilia, these interactions lead to multiple attracting states, all of which are characterized by an integer charge that is conserved. This even allows us to design initial conditions that lead to predictable emergent states. Finally, and very importantly, we show that, in nonuniform ciliary tissues, boundaries and inhomogeneities provide a robust route to metachronal waves.more » « less
-
null (Ed.)Magnetic actuation has emerged as a powerful and versatile mechanism for diverse applications, ranging from soft robotics, biomedical devices to functional metamaterials. This highly interdisciplinary research calls for an easy to use and efficient modeling/simulation platform that can be leveraged by researchers with different backgrounds. Here we present a lattice model for hard-magnetic soft materials by partitioning the elastic deformation energy into lattice stretching and volumetric change, so-called ‘magttice’. Magnetic actuation is realized through prescribed nodal forces in magttice. We further implement the model into the framework of a large-scale atomic/molecular massively parallel simulator (LAMMPS) for highly efficient parallel simulations. The magttice is first validated by examining the deformation of ferromagnetic beam structures, and then applied to various smart structures, such as origami plates and magnetic robots. After investigating the static deformation and dynamic motion of a soft robot, the swimming of the magnetic robot in water, like jellyfish's locomotion, is further studied by coupling the magttice and lattice Boltzmann method (LBM). These examples indicate that the proposed magttice model can enable more efficient mechanical modeling and simulation for the rational design of magnetically driven smart structures.more » « less
-
Abstract Stimulus‐responsive polymers are attractive for microactuators because they can be easily miniaturized and remotely actuated, enabling untethered operation. In this work, magnetic Fe microparticles are dispersed in a thermoplastic polyurethane shape memory polymer matrix and formed into artificial, magnetic cilia by solvent casting within the vertical magnetic field in the gap between two permanent magnets. Interactions of the magnetic moments of the microparticles, aligned by the applied magnetic field, drive self‐assembly of magnetic cilia along the field direction. The resulting magnetic cilia are reconfigurable using light and magnetic fields as remote stimuli. Temporary shapes obtained through combined magnetic actuation and photothermal heating can be locked by switching off the light and magnetic field. Subsequently turning on the light without the magnetic field drives recovery of the permanent shape. The permanent shape can also be reprogrammed after preparing the cilia by applying mechanical constraints and annealing at high temperature. Spatially controlled actuation is demonstrated by applying a mask for optical pattern transfer into the array of magnetic cilia. A theoretical model is developed for predicting the response of shape memory magnetic cilia and elucidates physical mechanisms behind observed phenomena, enabling the design and optimization of ciliary systems for specific applications.more » « less
-
Robot swarms have, to date, been constructed from artificial materials. Motile biological constructs have been created from muscle cells grown on precisely shaped scaffolds. However, the exploitation of emergent self-organization and functional plasticity into a self-directed living machine has remained a major challenge. We report here a method for generation of in vitro biological robots from frog ( Xenopus laevis ) cells. These xenobots exhibit coordinated locomotion via cilia present on their surface. These cilia arise through normal tissue patterning and do not require complicated construction methods or genomic editing, making production amenable to high-throughput projects. The biological robots arise by cellular self-organization and do not require scaffolds or microprinting; the amphibian cells are highly amenable to surgical, genetic, chemical, and optical stimulation during the self-assembly process. We show that the xenobots can navigate aqueous environments in diverse ways, heal after damage, and show emergent group behaviors. We constructed a computational model to predict useful collective behaviors that can be elicited from a xenobot swarm. In addition, we provide proof of principle for a writable molecular memory using a photoconvertible protein that can record exposure to a specific wavelength of light. Together, these results introduce a platform that can be used to study many aspects of self-assembly, swarm behavior, and synthetic bioengineering, as well as provide versatile, soft-body living machines for numerous practical applications in biomedicine and the environment.more » « less
An official website of the United States government
