skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparative life history patterns of female gorillas
Abstract ObjectivesSeveral theories have been proposed to explain the impact of ecological conditions on differences in life history variables within and between species. Here we compare female life history parameters of one western lowland gorilla population(Gorilla gorilla gorilla) and two mountain gorilla populations(Gorilla beringei beringei). Materials and MethodsWe compared the age of natal dispersal, age of first birth, interbirth interval, and birth rates using long‐term demographic datasets from Mbeli Bai (western gorillas), Bwindi Impenetrable National Park and the Virunga Massif (mountain gorillas). ResultsThe Mbeli western gorillas had the latest age at first birth, longest interbirth interval, and slowest surviving birth rate compared to the Virunga mountain gorillas. Bwindi mountain gorillas were intermediate in their life history patterns. DiscussionThese patterns are consistent with differences in feeding ecology across sites. However, it is not possible to determine the evolutionary mechanisms responsible for these differences, whether a consequence of genetic adaptation to fluctuating food supplies (“ecological risk aversion hypothesis”) or phenotypic plasticity in response to the abundance of food (“energy balance hypothesis”). Our results do not seem consistent with the extrinsic mortality risks at each site, but current conditions for mountain gorillas are unlikely to match their evolutionary history. Not all traits fell along the expected fast‐slow continuum, which illustrates that they can vary independently from each other (“modularity model”). Thus, the life history traits of each gorilla population may reflect a complex interplay of multiple ecological influences that are operating through both genetic adaptations and phenotypic plasticity.  more » « less
Award ID(s):
1753651
PAR ID:
10434084
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Biological Anthropology
Volume:
181
Issue:
4
ISSN:
2692-7691
Page Range / eLocation ID:
p. 564-574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectivesWeaning is a key life history milestone for mammals that represents both the end of nutritional investment from the perspective of mothers and the start of complete nutritional independence for the infants. The age at weaning may vary depending on ecological, social, and demographic factors experienced by the mother and infant. Bwindi mountain gorillas live in different environmental conditions and have longer interbirth intervals than their counterparts in the Virunga Volcanoes, yet other life history characteristics of this population remain less well known. We use long‐term data from Bwindi Impenetrable National Park, Uganda to examine factors related to weaning age. Materials and methodsWe analyzed data on infants born in four mountain gorilla groups in Bwindi to quantify their age of weaning (defined as last nipple contact) and to test if the sex of offspring, parity, and dominance rank of mother influences age of weaning. We also compared the age at weaning and time to conception after resumption of mating in Bwindi and Virunga gorillas. ResultsBwindi gorillas were weaned at an average age of 57.5 months. No difference was found between age of weaning for primiparous and multiparous mothers, nor did maternal dominance rank influence age of weaning, but sons were weaned at a later age than daughters. The majority of Bwindi mothers were still suckling when they resumed mating and mothers generally conceived before they weaned their previous offspring. The age of weaning was significantly later in Bwindi than in Virunga gorillas. After mothers resumed mating, the time to conceiving the next offspring was not significantly longer for Bwindi females than Virungas females (6 vs. 4 months). DiscussionLater weaning age for sons than daughters is similar to findings of other studies of great apes. Bwindi mountain gorillas are weaned at approximately the same age as western gorillas and chimpanzees, which is more than a year later than Virunga mountain gorillas. The results of this study suggest that variation in ecological conditions of populations living in close geographic proximity can result in variation in life history patterns, which has implications for understanding the evolution of the unique life history patterns of humans. 
    more » « less
  2. Abstract ObjectivesThe effects of phylogeny and locomotor behavior on long bone structural proportions are assessed through comparisons between adult and ontogenetic samples of extant gorillas. Materials and MethodsA total of 281 wild‐collected individuals were included in the study, divided into four groups that vary taxonomically and ecologically: western lowland gorillas (G. g. gorilla), lowland and highland grauer gorillas(G. b. graueri), and Virunga mountain gorillas (G. b. beringei). Lengths and articular breadths of the major long bones (except the fibula) were measured, and diaphyseal cross‐sectional geometric properties determined using computed tomography. Ages of immature specimens (n = 145) were known or estimated from dental development. Differences between groups in hind limb to forelimb proportions were assessed in both adults and during development. ResultsDiaphyseal strength proportions among adults vary in parallel with behavioral/ecological differences, and not phylogeny. The more arboreal western lowland and lowland grauer gorillas have relatively stronger forelimbs than the more terrestrial Virunga mountain gorillas, while the behaviorally intermediate highland grauer gorillas have intermediate proportions. Diaphyseal strength proportions are similar in young infants but diverge after 2 years of age in western lowland and mountain gorillas, at the same time that changes in locomotor behavior occur. There are no differences between groups in length or articular proportions among either adults or immature individuals. ConclusionLong bone diaphyseal strength proportions in gorillas are developmentally plastic, reflecting behavior, while length and articular proportions are much more genetically canalized. These findings have implications for interpreting morphological variation among fossil taxa. 
    more » « less
  3. Abstract ObjectivesAvailability of fruit is an important factor influencing variation in great ape foraging strategies and activity patterns. This study aims to quantify how frugivory influences activity budgets across age‐sex classes of mountain gorillas in Bwindi Impenetrable National Park, Uganda. Materials and methodsDaily proportions of fruit‐feeding and activity budgets were calculated using 6 years of observational data on four habituated groups. We fitted generalized linear mixed models to test for age‐sex differences in the amount of fruit‐feeding, and to test whether these factors influence the proportion of time spent feeding, resting, and traveling. ResultsBwindi mountain gorillas spent on average 15% of feeding time consuming fruit, with monthly variation ranging from 0 to 70%. Greater amounts of fruit‐feeding were associated with more time feeding and traveling, and less time resting. Immatures tended to spend more feeding time on fruit than adults, but less overall time feeding and more time traveling. There were no significant differences in the amount of fruit‐feeding and overall feeding time between adult females and silverback males, despite differences in body size. DiscussionThis study confirms that gorillas are frugivorous, and only the Virunga mountain gorilla population can be characterized as highly folivorous. Along with other frugivorous great apes, Bwindi mountain gorillas alter their activity patterns in response to varying amounts of fruit in their diet. A better understanding of how variable ecological conditions can drive diversity even within a subspecies has important implications for understanding relationships between ecology, body size, and foraging strategies in great apes. 
    more » « less
  4. Abstract Living in a rapidly changing environment can alter stress physiology at the population level, with negative impacts on health, reproductive rates, and mortality that may ultimately result in species decline. Small, isolated animal populations where genetic diversity is low are at particular risks, such as endangered Virunga mountain gorillas (Gorilla beringei beringei). Along with climate change‐associated environmental shifts that are affecting the entire population, subpopulations of the Virunga gorillas have recently experienced extreme changes in their social environment. As the growing population moves closer to the forest's carrying capacity, the gorillas are coping with rising population density, increased frequencies of interactions between social units, and changing habitat use (e.g., more overlapping home ranges and routine ranging at higher elevations). Using noninvasive monitoring of fecal glucocorticoid metabolites (FGM) on 115 habituated Virunga gorillas, we investigated how social and ecological variation are related to baseline FGM levels, to better understand the adaptive capacity of mountain gorillas and monitor potential physiological indicators of population decline risks. Generalized linear mixed models revealed elevated mean monthly baseline FGM levels in months with higher rainfall and higher mean maximum and minimum temperature, suggesting that Virunga gorillas might be sensitive to predicted warming and rainfall trends involving longer, warmer dry seasons and more concentrated and extreme rainfall occurrences. Exclusive use of smaller home range areas was linked to elevated baseline FGM levels, which may reflect reduced feeding efficiency and increased travel efforts to actively avoid neighboring groups. The potential for additive effects of stress‐inducing factors could have short‐ and long‐term impacts on the reproduction, health, and ultimately survival of the Virunga gorilla population. The ongoing effects of environmental changes and population dynamics must be closely monitored and used to develop effective long‐term conservation strategies that can help address these risk factors. 
    more » « less
  5. Abstract ObjectiveLinear enamel hypoplasia (LEH) is a condition marked by localized reductions in enamel thickness, resulting from growth disruptions during dental development. We use quantitative criteria to characterize the depth of LEH defects and “normal” perikymata in great apes. We test the hypothesis that mountain gorillas have shallow defects compared to other taxa, which may have led to their underestimation in previous studies. Materials and MethodsPrevious attempts to characterize LEH morphology quantitatively have been limited in sample size and scope. We generated digital elevation models using optical profilometry (Sensofar PLu Neox) and extracted 2D coordinates using ImageJ to quantify depths in canines from three great ape genera (N = 75 perikymata; 255 defects). ResultsAll defect depths fall outside the distribution of perikymata depths. Mountain gorilla defects are significantly shallower than those of other great ape taxa examined, including western lowland gorillas. Females have significantly deeper defects than males in all taxa. The deepest defect belongs to a wild‐captured zoo gorilla. Virunga mountain gorilla specimens collected by Dian Fossey exhibit deeper defects than those collected recently. DiscussionShallow defect morphology in mountain gorillas may have led to an underestimation of LEH prevalence in past studies. Defect depth is used as a proxy for insult severity, but depth might be influenced by inter‐ and intra‐specific variation in enamel growth. Future studies should test whether severe insults are associated with deeper defects, as might be the case with Haloko, a wild‐captured gorilla. Ongoing histologic studies incorporating associated behavioral records will test possible factors that underlie differences in defect morphology. 
    more » « less