While a vast collection of explainable AI (XAI) algorithms has been developed in recent years, they have been criticized for significant gaps with how humans produce and consume explanations. As a result, current XAI techniques are often found to be hard to use and lack effectiveness. In this work, we attempt to close these gaps by making AI explanations selective ---a fundamental property of human explanations---by selectively presenting a subset of model reasoning based on what aligns with the recipient's preferences. We propose a general framework for generating selective explanations by leveraging human input on a small dataset. This framework opens up a rich design space that accounts for different selectivity goals, types of input, and more. As a showcase, we use a decision-support task to explore selective explanations based on what the decision-maker would consider relevant to the decision task. We conducted two experimental studies to examine three paradigms based on our proposed framework: in Study 1, we ask the participants to provide critique-based or open-ended input to generate selective explanations (self-input). In Study 2, we show the participants selective explanations based on input from a panel of similar users (annotator input). Our experiments demonstrate the promise of selective explanations in reducing over-reliance on AI and improving collaborative decision making and subjective perceptions of the AI system, but also paint a nuanced picture that attributes some of these positive effects to the opportunity to provide one's own input to augment AI explanations. Overall, our work proposes a novel XAI framework inspired by human communication behaviors and demonstrates its potential to encourage future work to make AI explanations more human-compatible. 
                        more » 
                        « less   
                    
                            
                            Effects of Explanations in AI-Assisted Decision Making: Principles and Comparisons
                        
                    
    
            Recent years have witnessed the growing literature in empirical evaluation of explainable AI (XAI) methods. This study contributes to this ongoing conversation by presenting a comparison on the effects of a set of established XAI methods in AI-assisted decision making. Based on our review of previous literature, we highlight three desirable properties that ideal AI explanations should satisfy — improve people’s understanding of the AI model, help people recognize the model uncertainty, and support people’s calibrated trust in the model. Through three randomized controlled experiments, we evaluate whether four types of common model-agnostic explainable AI methods satisfy these properties on two types of AI models of varying levels of complexity, and in two kinds of decision making contexts where people perceive themselves as having different levels of domain expertise. Our results demonstrate that many AI explanations do not satisfy any of the desirable properties when used on decision making tasks that people have little domain expertise in. On decision making tasks that people are more knowledgeable, the feature contribution explanation is shown to satisfy more desiderata of AI explanations, even when the AI model is inherently complex. We conclude by discussing the implications of our study for improving the design of XAI methods to better support human decision making, and for advancing more rigorous empirical evaluation of XAI methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1850335
- PAR ID:
- 10434195
- Date Published:
- Journal Name:
- ACM Transactions on Interactive Intelligent Systems
- Volume:
- 12
- Issue:
- 4
- ISSN:
- 2160-6455
- Page Range / eLocation ID:
- 1 to 36
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Recent advances in explainable artificial intelligence (XAI) methods show promise for understanding predictions made by machine learning (ML) models. XAI explains how the input features are relevant or important for the model predictions. We train linear regression (LR) and convolutional neural network (CNN) models to make 1-day predictions of sea ice velocity in the Arctic from inputs of present-day wind velocity and previous-day ice velocity and concentration. We apply XAI methods to the CNN and compare explanations to variance explained by LR. We confirm the feasibility of using a novel XAI method [i.e., global layerwise relevance propagation (LRP)] to understand ML model predictions of sea ice motion by comparing it to established techniques. We investigate a suite of linear, perturbation-based, and propagation-based XAI methods in both local and global forms. Outputs from different explainability methods are generally consistent in showing that wind speed is the input feature with the highest contribution to ML predictions of ice motion, and we discuss inconsistencies in the spatial variability of the explanations. Additionally, we show that the CNN relies on both linear and nonlinear relationships between the inputs and uses nonlocal information to make predictions. LRP shows that wind speed over land is highly relevant for predicting ice motion offshore. This provides a framework to show how knowledge of environmental variables (i.e., wind) on land could be useful for predicting other properties (i.e., sea ice velocity) elsewhere. Significance StatementExplainable artificial intelligence (XAI) is useful for understanding predictions made by machine learning models. Our research establishes trustability in a novel implementation of an explainable AI method known as layerwise relevance propagation for Earth science applications. To do this, we provide a comparative evaluation of a suite of explainable AI methods applied to machine learning models that make 1-day predictions of Arctic sea ice velocity. We use explainable AI outputs to understand how the input features are used by the machine learning to predict ice motion. Additionally, we show that a convolutional neural network uses nonlinear and nonlocal information in making its predictions. We take advantage of the nonlocality to investigate the extent to which knowledge of wind on land is useful for predicting sea ice velocity elsewhere.more » « less
- 
            The rise of complex AI systems in healthcare and other sectors has led to a growing area of research called Explainable AI (XAI) designed to increase transparency. In this area, quantitative and qualitative studies focus on improving user trust and task performance by providing system- and prediction-level XAI features. We analyze stakeholder engagement events (interviews and workshops) on the use of AI for kidney transplantation. From this we identify themes which we use to frame a scoping literature review on current XAI features. The stakeholder engagement process lasted over nine months covering three stakeholder group's workflows, determining where AI could intervene and assessing a mock XAI decision support system. Based on the stakeholder engagement, we identify four major themes relevant to designing XAI systems – 1) use of AI predictions, 2) information included in AI predictions, 3) personalization of AI predictions for individual differences, and 4) customizing AI predictions for specific cases. Using these themes, our scoping literature review finds that providing AI predictions before, during, or after decision-making could be beneficial depending on the complexity of the stakeholder's task. Additionally, expert stakeholders like surgeons prefer minimal to no XAI features, AI prediction, and uncertainty estimates for easy use cases. However, almost all stakeholders prefer to have optional XAI features to review when needed, especially in hard-to-predict cases. The literature also suggests that providing both system and prediction-level information is necessary to build the user's mental model of the system appropriately. Although XAI features improve users' trust in the system, human-AI team performance is not always enhanced. Overall, stakeholders prefer to have agency over the XAI interface to control the level of information based on their needs and task complexity. We conclude with suggestions for future research, especially on customizing XAI features based on preferences and tasks.more » « less
- 
            The introduction of deep learning and CNNs to image recognition problems has led to state-of-the-art classification accuracy. However, CNNs exacerbate the issue of algorithm explainability due to deep learning’s black box nature. Numerous explainable AI (XAI) algorithms have been developed that provide developers insight into the operations of deep learning. We aim to make XAI explanations more user-centric by introducing modifications to existing XAI algorithms based on cognitive theory. The goal of this research is to yield intuitive XAI explanations that more closely resemble explanations given by experts in the domain of bird watching. Using an existing base XAI algorithm, we conducted two user studies with expert bird watchers and found that our novel averaged and contrasting XAI algorithms are significantly preferred over the base XAI algorithm for bird identification.more » « less
- 
            CXAD: Contrastive Explanations for Anomaly Detection: Algorithms, Complexity Results and ExperimentsAnomaly/Outlier detection (AD/OD) is often used in controversial applications to detect unusual behavior which is then further investigated or policed. This means an explanation of why something was predicted as an anomaly is desirable not only for individuals but also for the general population and policy-makers. However, existing explainable AI (XAI) methods are not well suited for Explainable Anomaly detection (XAD). In particular, most XAI methods provide instance-level explanations, whereas a model/global-level explanation is desirable for a complete understanding of the definition of normality or abnormality used by an AD algorithm. Further, existing XAI methods try to explain an algorithm’s behavior by finding an explanation of why an instance belongs to a category. However, by definition, anomalies/outliers are chosen because they are different from the normal instances. We propose a new style of model agnostic explanation, called contrastive explanation, that is designed specifically for AD algorithms which use semantic tags to create explanations. It addresses the novel challenge of providing a model-agnostic and global-level explanation by finding contrasts between the outlier group of instances and the normal group. We propose three formulations: (i) Contrastive Explanation, (ii) Strongly Contrastive Explanation, and (iii) Multiple Strong Contrastive Explanations. The last formulation is specifically for the case where a given dataset is believed to have many types of anomalies. For the first two formulations, we show the underlying problem is in the computational class P by presenting linear and polynomial time exact algorithms. We show that the last formulation is computationally intractable, and we use an integer linear program for that version to generate experimental results. We demonstrate our work on several data sets such as the CelebA image data set, the HateXplain language data set, and the COMPAS dataset on fairness. These data sets are chosen as their ground truth explanations are clear or well-known.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    