skip to main content


Title: Room temperature synthesis of lead-free FASnI 3 perovskite nanocrystals with improved stability by SnF 2 additive
Tin halide perovskites are among the candidates for replacing lead-based ones for less toxicity and comparable optical properties. However, stability remains a challenge due to the easier oxidation of Sn 2+ than Pb 2+ . Here, for the first time, we applied the ligand-assisted reprecipitation method to synthesize CH(NH 2 ) 2 SnI 3 (FASnI 3 ) orthorhombic perovskite nanocrystals with an average diameter of 7.7 nm and a photoluminescence emission at 825 [Formula: see text] 2 nm (1.5 eV). The influence of synthesis parameters, including precursor solvent, precipitation media, temperature, and time on optical properties of nanocrystals, was studied. By incorporating SnF 2 , the stability of the nanocrystals was improved, and the oxidation from FASnI 3 to FA 2 SnI 6 was significantly delayed, which was quantitively demonstrated and confirmed by observing the characteristic diffraction peaks of the perovskite phase using x-ray diffraction at various exposure time to air. The addition of SnF 2 is optimized to be 6%. The FASnI 3 nanocrystals stayed stable for at least 265 days under N 2 storage at room temperature and relative humidity of 20%.  more » « less
Award ID(s):
1751946
NSF-PAR ID:
10434227
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Applied Physics Reviews
Volume:
10
Issue:
1
ISSN:
1931-9401
Page Range / eLocation ID:
011404
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    All‐inorganic lead halide perovskite nanocrystals (NCs) have great optoelectronic properties with promising applications in light‐emitting diodes (LEDs), lasers, photodetectors, solar cells, and photocatalysis. However, the intrinsic toxicity of Pb and instability of the NCs impede their broad applications. Shell‐coating is an effective method for enhanced environmental stability while reducing toxicity by choosing non‐toxic shell materials such as metal oxides, polymers, silica, etc. However, multiple perovskite NCs can be encapsulated within the shell material and a uniform epitaxial‐type shell growth of well‐isolated NCs is still challenging. In this work, lead‐free vacancy‐ordered double perovskite Cs2SnX6(X = Cl, Br, and I) shells are epitaxially grown on the surface of CsPbX3NCs by a hot‐injection method. The effectiveness of the non‐toxic double perovskite shell protection is demonstrated by the enhanced environmental and phase stability against UV illumination and water. In addition, the photoluminescence quantum yields (PL QYs) increase for the CsPbCl3and CsPbBr3NCs after shelling because of the type I band alignment of the core/shell materials, while enhanced charge transport properties obtained from CsPbI3/Cs2SnI6core/shell NCs are due to the efficient charge separation in the type II core/shell band alignment.

     
    more » « less
  2. Air‐stable p‐type SnF2:Cs2SnI6with a bandgap of 1.6 eV has been demonstrated as a promising material for Pb‐free halide perovskite solar cells. Crystalline Cs2SnI6phase is obtained with CsI, SnI2, and SnF2salts in gamma‐butyrolactone solvent, but not with dimethyl sulfoxide andN,N‐dimethylformamide solvents. Cs2SnI6is found to be stable for at least 1000 h at 100 °C when dark annealed in nitrogen atmosphere. In this study, Cs2SnI6has been used in a superstrate n–i–p planar device structure enabled by a spin‐coated absorber thickness of ≈2 μm on a chemical bath deposited Zn(O,S) electron transport layer. The best device power conversion efficiency reported here is 5.18% withVOCof 0.81 V, 9.28 mA cm−2JSC, and 68% fill factor. The dark saturation current and diode ideality factor are estimated as 1.5 × 10−3 mA cm−2and 2.18, respectively. The devices exhibit a highVOCdeficit and low short‐circuit current density due to high bulk and interface recombination. Device efficiency can be expected to increase with improvement in material and interface quality, charge transport, and device engineering.

     
    more » « less
  3. Abstract

    Cs2SnI6perovskite displays excellent air stability and a high absorption coefficient, promising for photovoltaic and optoelectronic applications. However, Cs2SnI6‐based device performance is still low as a result of lacking optimized synthesis approaches to obtain high quality Cs2SnI6crystals. Here, a new simple method to synthesize single crystalline Cs2SnI6perovskite at a liquid–liquid interface is reported. By controlling solvent conditions and Cs2SnI6supersaturation at the liquid–liquid interface, Cs2SnI6crystals can be obtained from 3D to 2D growth with controlled geometries such as octahedron, pyramid, hexagon, and triangular nanosheets. The formation mechanisms and kinetics of complex shapes/geometries of high quality Cs2SnI6crystals are investigated. Freestanding single crystalline 2D nanosheets can be fabricated as thin as 25 nm, and the lateral size can be controlled up to sub‐millimeter regime. Electronic property of the high quality Cs2SnI62D nanosheets is also characterized, featuring a n‐type conduction with a high carrier mobility of 35 cm2V−1s−1. The interfacial reaction‐controlled synthesis of high‐quality crystals and mechanistic understanding of the crystal growth allow to realize rational design of materials, and the manipulation of crystal growth can be beneficial to achieve desired properties for potential functional applications.

     
    more » « less
  4. Organic–inorganic hybrid lead-based perovskites experience significant environmental instability under ambient moist air and are not environmentally benign due to the usage of toxic Pb. Here, we report a new approach to synthesize lead-free all inorganic perovskites (Cs 2 SnI x Cl 6−x ) using hydriodic acid (HI) demonstrating greatly enhanced environmental stability and tunable optical properties by controlling the I − /Cl − ratios. Single phase perovskites can be achieved with a low iodine or chlorine content, and a phase separation occurs in the binary system with closer iodine and chlorine dopings. UV-vis diffuse reflectance and photoluminescence measurements reveal tunable band gaps of Cs 2 SnI x Cl 6−x perovskites from the UV to the infrared region. The mixed halide perovskite with a lower chloride content shows significantly higher photoluminescence intensity. The thermal stability of mixed halide all-inorganic perovskites is continuously improved as the Cl content increases. The synthesis of Sn-based perovskites with tunable optical properties and environmental stability represents one step further toward the realization of the stable lead-free all inorganic perovskites. 
    more » « less
  5. Abstract

    Organic–inorganic hybrid perovskites have emerged as promising optoelectronic materials for applications in photovoltaic and optoelectronic devices. Particularly, 2D layer‐structured hybrid perovskites are of great interest due to their remarkable optical and electrical properties, which can be easily tuned by selecting suitable organic and inorganic moieties during the material synthesis. Here, the solution‐phase growth of a large square‐shaped single‐crystalline 2D hybrid perovskite, phenethylammonium lead bromide (C6H5C2H4NH3)2PbBr4(PEPB), with thickness as few as 3 unit cell layers is demonstrated. Compared to bulk crystals, the 2D PEPB nanocrystals show a major blueshifted photoluminescence (PL) peak at 409 nm indicating an increase in bandgap of 40 meV. Besides the major peak, two new PL peaks located at 480 and 525 nm are observed from the hybrid perovskite nanocrystals. PEPB nanocrystals with different thicknesses show different colors, which can be used to estimate the thickness of the nanocrystals. Time‐resolved reflectance spectroscopy is used to investigate the exciton dynamics, which exhibits a biexponential decay with an amplitude‐weighted lifetime of 16.7 ps. The high‐quality 2D (C6H5C2H4NH3)2PbBr4nanocrystals are expected to have high PL quantum efficiency and potential applications for light‐emitting devices.

     
    more » « less