Short tandem repeats (STRs) represent an important class of genetic variation that can contribute to phenotypic differences. Although millions of single nucleotide variants (SNVs) and short indels have been identified among wild Caenorhabditis elegans strains, the natural diversity in STRs remains unknown. Here, we characterized the distribution of 31,991 STRs with motif lengths of 1–6 bp in the reference genome of C. elegans . Of these STRs, 27,667 harbored polymorphisms across 540 wild strains and only 9691 polymorphic STRs (pSTRs) had complete genotype data for more than 90% of the strains. Compared with the reference genome, the pSTRs showed more contraction than expansion. We found that STRs with different motif lengths were enriched in different genomic features, among which coding regions showed the lowest STR diversity and constrained STR mutations. STR diversity also showed similar genetic divergence and selection signatures among wild strains as in previous studies using SNVs. We further identified STR variation in two mutation accumulation line panels that were derived from two wild strains and found background-dependent and fitness-dependent STR mutations. We also performed the first genome-wide association analyses between natural variation in STRs and organismal phenotypic variation among wild C. elegans strains. Overall, our results delineate the first large-scale characterization of STR variation in wild C. elegans strains and highlight the effects of selection on STR mutations.
more »
« less
Interplay Between Polymorphic Short Tandem Repeats and Gene Expression Variation in Caenorhabditis elegans
Abstract Short tandem repeats (STRs) have orders of magnitude higher mutation rates than single nucleotide variants (SNVs) and have been proposed to accelerate evolution in many organisms. However, only few studies have addressed the impact of STR variation on phenotypic variation at both the organismal and molecular levels. Potential driving forces underlying the high mutation rates of STRs also remain largely unknown. Here, we leverage the recently generated expression and STR variation data among wild Caenorhabditis elegans strains to conduct a genome-wide analysis of how STRs affect gene expression variation. We identify thousands of expression STRs (eSTRs) showing regulatory effects and demonstrate that they explain missing heritability beyond SNV-based expression quantitative trait loci. We illustrate specific regulatory mechanisms such as how eSTRs affect splicing sites and alternative splicing efficiency. We also show that differential expression of antioxidant genes and oxidative stresses might affect STR mutations systematically using both wild strains and mutation accumulation lines. Overall, we reveal the interplay between STRs and gene expression variation by providing novel insights into regulatory mechanisms of STRs and highlighting that oxidative stress could lead to higher STR mutation rates.
more »
« less
- Award ID(s):
- 1751035
- PAR ID:
- 10434357
- Editor(s):
- Larracuente, Amanda
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 40
- Issue:
- 4
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Phenotypic variation in diverse organism-level traits have been studied in Caenorhabditis elegans wild strains, but differences in gene expression and the underlying variation in regulatory mechanisms are largely unknown. Here, we use natural variation in gene expression to connect genetic variants to differences in organismal- level traits, including drug and toxicant responses. We performed transcriptomic analysis on 207 genetically distinct C. elegans wild strains to study natural regulatory variation of gene expression. Using this massive dataset, we performed genome-wide association mappings to investigate the genetic basis underlying gene expression variation and revealed complex genetic architectures. We found a large collection of hotspots enriched for expression quantitative trait loci across the genome. We further used mediation analysis to understand how gene expression variation could underlie organism-level phenotypic variation for a variety of complex traits. These results reveal the natural diversity in gene expression and possible regulatory mechanisms in this keystone model organism, highlighting the promise of gene expression variation in shaping phenotypic diversity.more » « less
-
Abstract Phenotypic variation in organism-level traits has been studied inCaenorhabditis eleganswild strains, but the impacts of differences in gene expression and the underlying regulatory mechanisms are largely unknown. Here, we use natural variation in gene expression to connect genetic variants to differences in organismal-level traits, including drug and toxicant responses. We perform transcriptomic analyses on 207 genetically distinctC. eleganswild strains to study natural regulatory variation of gene expression. Using this massive dataset, we perform genome-wide association mappings to investigate the genetic basis underlying gene expression variation and reveal complex genetic architectures. We find a large collection of hotspots enriched for expression quantitative trait loci across the genome. We further use mediation analysis to understand how gene expression variation could underlie organism-level phenotypic variation for a variety of complex traits. These results reveal the natural diversity in gene expression and possible regulatory mechanisms in this keystone model organism, highlighting the promise of using gene expression variation to understand how phenotypic diversity is generated.more » « less
-
Short tandem repeats (STRs) are enriched in eukaryoticcis-regulatory elements and alter gene expression, yet how they regulate transcription remains unknown. We found that STRs modulate transcription factor (TF)–DNA affinities and apparent on-rates by about 70-fold by directly binding TF DNA-binding domains, with energetic impacts exceeding many consensus motif mutations. STRs maximize the number of weakly preferred microstates near target sites, thereby increasing TF density, with impacts well predicted by statistical mechanics. Confirming that STRs also affect TF binding in cells, neural networks trained only on in vivo occupancies predicted effects identical to those observed in vitro. Approximately 90% of TFs preferentially bound STRs that need not resemble known motifs, providing a cis-regulatory mechanism to target TFs to genomic sites.more » « less
-
Heritable variation in gene expression is common within and among species and contributes to phenotypic diversity. Mutations affecting eithercis- ortrans-regulatory sequences controlling gene expression give rise to variation in gene expression, and natural selection acting on this variation causes some regulatory variants to persist in a population for longer than others. To understand how mutation and selection interact to produce the patterns of regulatory variation we see within and among species, my colleagues and I have been systematically determining the effects of new mutations on expression of theTDH3gene inSaccharomyces cerevisiaeand comparing them to the effects of polymorphisms segregating within this species. We have also investigated the molecular mechanisms by which regulatory variants act. Over the past decade, this work has revealed properties ofcis- andtrans-regulatory mutations including their relative frequency, effects, dominance, pleiotropy and fitness consequences. Comparing these mutational effects to the effects of polymorphisms in natural populations, we have inferred selection acting on expression level, expression noise and phenotypic plasticity. Here, I summarize this body of work and synthesize its findings to make inferences not readily discernible from the individual studies alone. This article is part of the theme issue ‘Interdisciplinary approaches to predicting evolutionary biology’.more » « less