Abstract A new class of conjugated macrocycle, the cyclo[4]thiophene[4]furan hexyl ester (C4TE4FE), is reported. This cycle consists of alternating α‐linked thiophene‐3‐ester and furan‐3‐ester repeat units, and was prepared in a single step using Suzuki–Miyaura cross‐coupling of a 2‐(thiophen‐2‐yl)furan monomer. The ester side groups help promote asynconformation of the heterocycles, which enables formation of the macrocycle. Cyclic voltammetry studies revealed that C4TE4FE could undergo multiple oxidations, so treatment with SbCl5resulted in formation of the [C4TE4FE]2+dication. Computational work, paired with1H NMR spectroscopy of the dication, revealed that the cycle becomes globally aromatic upon 2e−oxidation, as the annulene pathway along the outer ring becomes Hückel aromatic. The change in ring current for the cycle upon oxidation was clear from1H NMR spectroscopy, as the protons of the thiophene and furan rings shifted downfield by nearly 6 ppm. This work highlights the potential of sequence control in furan‐based macrocycles to tune electronic properties.
more »
« less
Rapid Access to Encapsulated Molecular Rotors via Coordination‐Driven Macrocycle Formation
Abstract Macrocycle formation that relies upontransmetal coordination of appropriately placed pyridine ligands within an arylene ethynylene construct provides rapid and reliable access to molecular rotators encapsulated within macrocyclic stators. Showing no significant close contacts to the central rotators, X‐ray crystallography of AgI‐coordinated macrocycles provides plausibility for unobstructed rotation or wobbling of rotators within the central cavity. Solid‐state13C NMR of PdII‐coordinated macrocycles supports the notion of unobstructed movement of simple arenes in the crystal lattice. Solution1H NMR studies indicate complete and immediate macrocycle formation upon the introduction of PdIIto the pyridyl‐based ligand at room temperature. Moreover, the formed macrocycle is stable in solution; a lack of significant changes in the1H NMR spectrum upon cooling to −50 °C is consistent with the absence of dynamic behavior. The synthetic route to these macrocycles is expedient and modular, providing access to rather complex constructs in four simple steps involving Sonogashira coupling and deprotection reactions.
more »
« less
- PAR ID:
- 10434537
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 29
- Issue:
- 50
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cooperativity plays a critical role in self‐assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO‐based cationic guests in a 2 : 1 ratio in high affinities (Ktotal≈1013 M−2) in the highly polar DMF. The host–guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host–guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest‐induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host–guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies.more » « less
-
Abstract Mono‐N‐protected amino acids (MPAAs) are increasingly common ligands in Pd‐catalyzed C−H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C−H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand‐accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand‐to‐metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C−H activation and catalytic C−H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100‐fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdIIenables a single MPAA to support C−H activation at multiple PdIIcenters.more » « less
-
Abstract A sterically strained 32π‐electron antiaromatic bis‐BODIPY macrocycle in which two BODIPY fragments are linked byp‐divinylbenzene groups was prepared and characterized. Unlike regular BODIPYs, the fluorescence in this macrocycle is quenched. The broad signals in the NMR spectra of the macrocycle were explained by the vibronic freedom of thep‐divinylbenzene fragments. The possible diradicaloid nature of the macrocycle was excluded on the basis of variable‐temperature EPR spectra in solution and in solid state, which is indicative of its closed‐shell quinoidal structure. Themeso‐C−H bond in the macrocycle and its precursor BODIPY dialdehyde3forms a weak hydrogen bond with THF and is susceptible for the nucleophilic attack by organic amines and cyanide anion. The reaction products of such a nucleophilic attack havemeso‐sp3carbon atoms and were characterized by NMR, mass spectrometry and, in one case, X‐ray crystallography. Unlike the initial bis‐BODIPY macrocycle, the adducts have strong fluorescence in the 400 nm region. The electronic structure and spectroscopic properties of new chromophores were probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations and correlate well with the experimental data.more » « less
-
Abstract The silylium‐like surface species [iPr3Si][(RFO)3Al−OSi≡)] activates (N^N)Pd(CH3)Cl (N^N=Ar−N=CMeMeC=N−Ar, Ar=2,6‐bis(diphenylmethyl)‐4‐methylbenzene) by chloride ion abstraction to form [(N^N)Pd−CH3][(RFO)3Al−OSi≡)] (1). A combination of FTIR, solid‐state NMR spectroscopy, and reactions with CO or vinyl chloride establish that1shows similar reactivity patterns as (N^N)Pd(CH3)Cl activated with Na[B(ArF)4]. Multinuclear13C{27Al} RESPDOR and1H{19F} S‐REDOR experiments are consistent with a weakly coordinated ion‐pair between (N^N)Pd−CH3+and [(RFO)3Al−OSi≡)].1catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd−CH3]+in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions.1produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate.more » « less