skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contrasting cases in geometry: Opportunities to explore different student solution strategies
Utilizing an innovative and theoretically-grounded approach, we extend the work of cognitive scientists and mathematics educators who have previously documented the impact of comparison on students’ learning in algebra with the goal of transforming the learning that occurs in eighth- grade geometry classrooms. The purpose of this paper is to examine the types of comparisons participants made during think aloud interviews when engaging with curricular materials that have them examine multiple solution strategies. This research seeks to extend the work of using comparisons in algebra to determine if using comparisons in geometry will help improve students’ mathematical understanding.  more » « less
Award ID(s):
1907745
PAR ID:
10434723
Author(s) / Creator(s):
; ;
Editor(s):
Lischka, A. E.; Dyer, E. B.; Jones, R. S.; Lovett, J. N.; Strayer, J.; Drown, S.
Date Published:
Journal Name:
roceedings of the forty-fourth annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education
Page Range / eLocation ID:
157-161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The authors examine students’ linear progression histories in mathematics throughout high school years, using the High School Longitudinal Study of 2009. Although scholars have attended to this before, the authors provide a new organizing framework for thousands of heterogenous mathematics course-taking sequences. Using cluster analysis, the authors identify eight distinctive course-taking sequence typologies. Approximately 45 percent of students take a linear sequence of mathematics, whereas others stop taking mathematics altogether, repeat coursework, or regress to lower level courses. Only about 14 percent of students take the expected four-year linear sequence of Algebra 1–Geometry–Algebra II–Advanced Mathematics. Membership into different typologies is related to student characteristics and school settings (e.g., race, socioeconomic status, and high school graduation requirements). The results provide a tool for schools’ self-assessment of mathematics course-taking histories among students, creating intervention opportunities and a foundation for future research on advancing our understanding of stratification in math course-taking patterns, postsecondary access, and science, technology, engineering, and mathematics majors. 
    more » « less
  2. Cook, S.; Katz, B.; Moore-Russo, D. (Ed.)
    Inquiry and active learning instructional methods have largely been regarded as equitable and beneficial for students. However, researchers have highlighted math classrooms as racialized and gendered spaces that can negatively impact marginalized students’ experiences in such spaces. In this study, I examine the development of one argument, and whose ideas are solicited and leveraged, in an inquiry-oriented linear algebra course with an eye toward participatory equity. I found that gender related most to the inequity of participation in argumentation and that only men participated in generalizing activity. This study adds to the growing literature addressing equity in inquiry and active learning math settings. 
    more » « less
  3. Cook, S.; Katz, B.; Moore-Russo, D. (Ed.)
    Inquiry and active learning instructional methods have largely been regarded as equitable and beneficial for students. However, researchers have highlighted math classrooms as racialized and gendered spaces that can negatively impact marginalized students’ experiences in such spaces. In this study, I examine the development of one argument, and whose ideas are solicited and leveraged, in an inquiry-oriented linear algebra course with an eye toward participatory equity. I found that gender related most to the inequity of participation in argumentation and that only men participated in generalizing activity. This study adds to the growing literature addressing equity in inquiry and active learning math settings. 
    more » « less
  4. Cook, S.; Katz, B.; Moore-Russo, D. (Ed.)
    Inquiry and active learning instructional methods have largely been regarded as equitable and beneficial for students. However, researchers have highlighted math classrooms as racialized and gendered spaces that can negatively impact marginalized students’ experiences in such spaces. In this study, I examine the development of one argument, and whose ideas are solicited and leveraged, in an inquiry-oriented linear algebra course with an eye toward participatory equity. I found that gender related most to the inequity of participation in argumentation and that only men participated in generalizing activity. This study adds to the growing literature addressing equity in inquiry and active learning math settings. 
    more » « less
  5. null (Ed.)
    Proof and argumentation are essential components of learning mathematics, and technology can mediate students’ abilities to learn. This systematic literature review synthesizes empirical literature which examines technology as a support for proof and argumentation across all content domains. The themes of this review are revealed through analyzing articles related to Geometry and mathematical content domains different from Geometry. Within the Geometry literature, five subthemes are discussed: (1) empirical and theoretical interplay in dynamic geometry environments (DGEs), (2) justifying constructions using DGEs, (3) comparing technological and non-technological environments, (4) student processing in a DGE, and (5) intelligent tutor systems. Within the articles related to content different from Geometry, two subthemes are discussed: technological supports for number systems/algebra and technological supports for calculus/real analysis. The technological supports for proof revealed in this review could aid future research and practice in developing new strategies to mediate students’ understandings of proof. 
    more » « less