skip to main content


Title: Importance nested sampling with normalising flows
Abstract

We present an improved version of the nested sampling algorithmnessaiin which the core algorithm is modified to use importance weights. In the modified algorithm, samples are drawn from a mixture of normalising flows and the requirement for samples to be independently and identically distributed (i.i.d.) according to the prior is relaxed. Furthermore, it allows for samples to be added in any order, independently of a likelihood constraint, and for the evidence to be updated with batches of samples. We call the modified algorithmi-nessai. We first validatei-nessaiusing analytic likelihoods with known Bayesian evidences and show that the evidence estimates are unbiased in up to 32 dimensions. We comparei-nessaito standardnessaifor the analytic likelihoods and the Rosenbrock likelihood, the results show thati-nessaiis consistent withnessaiwhilst producing more precise evidence estimates. We then testi-nessaion 64 simulated gravitational-wave signals from binary black hole coalescence and show that it produces unbiased estimates of the parameters. We compare our results to those obtained using standardnessaianddynestyand find thati-nessairequires 2.68 and 13.3 times fewer likelihood evaluations to converge, respectively. We also testi-nessaiof an 80 s simulated binary neutron star signal using a reduced-order-quadrature basis and find that, on average, it converges in 24 min, whilst only requiring1.01×106likelihood evaluations compared to1.42×106fornessaiand4.30×107fordynesty. These results demonstrate thati-nessaiis consistent withnessaianddynestywhilst also being more efficient.

 
more » « less
NSF-PAR ID:
10434850
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Machine Learning: Science and Technology
Volume:
4
Issue:
3
ISSN:
2632-2153
Page Range / eLocation ID:
Article No. 035011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We investigate the stellar mass–black hole mass (*BH) relation with type 1 active galactic nuclei (AGNs) down toBH=107M, corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs withBHranging from 107–1010Mthat are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra.*of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the*BHrelation covering the unexplored low-mass ranges ofBH107108M, and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic*BHrelation atz∼ 2 has a moderate positive offset of 0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime ofBH107108M. Our*BHrelation is inconsistent with theBHsuppression at the low-*regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.

     
    more » « less
  2. Abstract

    One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, thez-axis) with frequencyω0due to absorption of low-power microwaves of frequencyω0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that componentISzof spin current vector(ISx(t),ISy(t),ISz)ω0is time-independent whileISx(t)andISy(t)oscillate harmonically in time with a single frequencyω0whereas pumped charge current is zeroI0in the same adiabaticω0limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spinISα(t)and chargeI(t) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiplesNω0of the driving frequencyω0. The cutoff order of such high harmonics increases with SOC strength, reachingNmax11in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoffNmax25can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures.

     
    more » « less
  3. Abstract

    Polyatomic molecules have been identified as sensitive probes of charge-parity violating and parity violating physics beyond the Standard Model (BSM). For example, many linear triatomic molecules are both laser-coolable and have parity doublets in the ground electronicX˜2Σ+(010)state arising from the bending vibration, both features that can greatly aid BSM searches. Understanding theX˜2Σ+(010)state is a crucial prerequisite to precision measurements with linear polyatomic molecules. Here, we characterize the fundamental bending vibration of174YbOH using high-resolution optical spectroscopy on the nominally forbiddenX˜2Σ+(010)A˜2Π1/2(000)transition at 588 nm. We assign 39 transitions originating from the lowest rotational levels of theX˜2Σ+(010)state, and accurately model the state’s structure with an effective Hamiltonian using best-fit parameters. Additionally, we perform Stark and Zeeman spectroscopy on theX˜2Σ+(010)state and fit the molecule-frame dipole moment toDmol=2.16(1)Dand the effective electrong-factor togS=2.07(2). Further, we use an empirical model to explain observed anomalous line intensities in terms of interference from spin–orbit and vibronic perturbations in the excitedA˜2Π1/2(000)state. Our work is an essential step toward searches for BSM physics in YbOH and other linear polyatomic molecules.

     
    more » « less
  4. Abstract

    We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi–Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi–Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using a multi-task architecture. With 30% (80%) training ratio, we reach an accuracy of 100% forh(1,1)and 97% forh(2,1)(100% for both), 81% (96%) forh(3,1), and 49% (83%) forh(2,2). Assuming that the Euler number is known, as it is easy to compute, and taking into account the linear constraint arising from index computations, we get 100% total accuracy.

     
    more » « less
  5. Abstract

    We describe the results of a new reverberation mapping program focused on the nearby Seyfert galaxy NGC 3227. Photometric and spectroscopic monitoring was carried out from 2022 December to 2023 June with the Las Cumbres Observatory network of telescopes. We detected time delays in several optical broad emission lines, with Hβhaving the longest delay atτcent=4.00.9+0.9days and Heiihaving the shortest delay withτcent=0.90.8+1.1days. We also detect velocity-resolved behavior of the Hβemission line, with different line-of-sight velocities corresponding to different observed time delays. Combining the integrated Hβtime delay with the width of the variable component of the emission line and a standard scale factor suggests a black hole mass ofMBH=1.10.3+0.2×107M. Modeling of the full velocity-resolved response of the Hβemission line with the phenomenological codeCARAMELfinds a similar mass ofMBH=1.20.7+1.5×107Mand suggests that the Hβ-emitting broad-line region (BLR) may be represented by a biconical or flared disk structure that we are viewing at an inclination angle ofθi≈ 33° and with gas motions that are dominated by rotation. The new photoionization-based BLR modeling toolBELMACfinds general agreement with the observations when assuming the best-fitCARAMELresults; however,BELMACprefers a thick-disk geometry and kinematics that are equally composed of rotation and inflow. Both codes infer a radially extended and flattened BLR that is not outflowing.

     
    more » « less