skip to main content


Title: Dimetalloylene (M‐E‐M) Complexes of Heavier Main Group Elements Ge, Sn, Pb, Bi via Cleavage of E‐X Bonds (X=N(SiMe 3 ) 2 , O t Bu) with an Iridium Hydride
Abstract

Reactions of the IrVhydride [MeBDIDipp]IrH4{BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6‐iPr2C6H3} with E[N(SiMe3)2]2(E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([MeBDIDipp]IrH)2(μ2‐E)2in good yields. Moreover, ([MeBDIDipp]IrH)2(μ2‐Ge)2was formed in situ from thermal decomposition of [MeBDIDipp]Ir(H)2Ge[N(SiMe3)2]2. These reactions are accompanied by liberation of HN(SiMe3)2and H2through the apparent cleavage of an E−N(SiMe3)2bond by Ir−H. In a reversal of this process, ([MeBDIDipp]IrH)2(μ2‐E)2reacted with excess H2to regenerate [MeBDIDipp]IrH4. Varying the concentrations of reactants led to formation of the trimeric ([MeBDIDipp]IrH2)3(μ2‐E)3. The further scope of this synthetic route was investigated with group 15 amides, and ([MeBDIDipp]IrH)2(μ2‐Bi)2was prepared by the reaction of [MeBDIDipp]IrH4with Bi(NMe2)3or Bi(OtBu)3to afford the first example of a “naked” two‐coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2E2(E=Sn, Pb) compounds characterized them as open‐shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2Bi2is characterized as having a closed‐shell singlet ground state.

 
more » « less
Award ID(s):
1954808
PAR ID:
10434871
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
29
Issue:
49
ISSN:
0947-6539
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Not, available (Ed.)
    Abstract

    Described here is a direct entry to two examples of 3d transition metal catalysts that are active for the cyclic polymerization of phenylacetylene, namely, [(BDI)M{κ2C,C‐(Me3SiC3SiMe3)}] (2‐M) (BDI=[ArNC(CH3)]2CH, Ar=2,6‐iPr2C6H3;M=Ti, V). Catalysts are prepared in one step by the treatment of [(BDI)MCl2] (1‐M,M=Ti,V) with 1,3‐dilithioallene [Li2(Me3SiC3SiMe3)]. Complexes2‐Mhave been spectroscopically and structurally characterized and the polymers that are catalytically formed from phenylacetylene were verified to have a cyclic topology based on a combination of size‐exclusion chromatography (SEC) and intrinsic viscosity studies. Two‐electron oxidation of2‐Vwith nitrous oxide (N2O) cleanly yields a [VV] alkylidene‐alkynyl oxo complex [(BDI)V(=O){κ1C‐(=C(SiMe3)CC(SiMe3))}] (3), which lends support for how this scaffold in2‐Mmight be operating in the polymerization of the terminal alkyne. This work demonstrates how alkylidynes can be circumvented using 1,3‐dianionic allene as a segue into M−C multiple bonds.

     
    more » « less
  2. null (Ed.)
    Salt metathesis reactions between a low-valent rhenium( i ) complex, Na[Re(η 5 -Cp)(BDI)] (BDI = N , N ′-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(N t Bu) 2 ] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(N t Bu) 2 ])(η 5 -Cp)(BDI) (E = Si ( 1a ), Ge ( 2 ), Sn ( 4 )) with varying extents of Re–E multiple bonding. Whereas the rhenium–stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re–E single bond, the rhenium–silylene ( 1a ) and –germylene ( 2 ) both engage in π-interactions to form short Re–E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η 5 -Cp)(BDI)] and SiCl[PhC(N t Bu) 2 ], as manipulation of reaction conditions led to isolation of an unusual rhenium–silane, (BDI)Re(μ-η 5 :η 1 -C 5 H 4 )(SiH[PhC(N t Bu) 2 ]) ( 1b ) and a dinitrogen bridged rhenium–silylene, (η 5 -Cp)(BDI)Re(μ-N 2 )Si[PhC(N t Bu) 2 ] ( 1c ), in addition to 1a . Finally, the reaction of Na[Re(η 5 -Cp)(BDI)] with GeCl 2 ·dioxane led to a rare μ 2 -tetrelido complex, μ 2 -Ge[Re(η 5 -Cp)(BDI)] 2 ( 3 ). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations. 
    more » « less
  3. Reaction of ( p -tol 3 P) 2 PtCl 2 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/THF/reflux) gives monosubstituted trans -Cl( p -tol 3 P) 2 Pt(CC) 2 SiMe 3 (63%), which with wet n -Bu 4 N + F − yields trans -Cl( p -tol 3 P) 2 Pt(CC) 2 H ( 2 , 96%). Hay oxidative homocoupling (O 2 /CuCl/TMEDA) gives all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 Cl ( 3 , 68%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 1/rt) affords monosubstituted all- trans -Cl( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (46%), which is converted by a similar desilylation/homocoupling sequence to all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 3 Pt(P p -tol 3 ) 2 Cl ( 7 ; 79%). Reaction of ( p -tol 3 P) 2 PtCl 2 and excess H(CC) 2 SiMe 3 (HNEt 2 /cat. CuI) gives trans -Me 3 Si(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 (78%), which with wet n -Bu 4 N + F − affords trans -H(CC) 2 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Hay oxidative cross coupling with 2 (1 : 4) gives all- trans -Cl[( p -tol 3 P) 2 Pt(CC) 4 ] 2 Pt(P p -tol 3 ) 2 Cl ( 10 , 36%) along with homocoupling product 3 (33%). Reaction of 3 and Me 3 Sn(CC) 2 SiMe 3 (1 : 2/rt) yields all- trans -Me 3 Si(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 SiMe 3 ( 17 , 77%), which with wet n -Bu 4 N + F − gives all- trans -H(CC) 2 ( p -tol 3 P) 2 Pt(CC) 4 Pt(P p -tol 3 ) 2 (CC) 2 H (96%). Reaction of 3 and excess Me 3 P gives all- trans -Cl(Me 3 P) 2 Pt(CC) 4 Pt(PMe 3 ) 2 Cl ( 4 , 86%). A model reaction of trans -( p -tol)( p -tol 3 P) 2 PtCl and KSAc yields trans -( p -tol)( p -tol 3 P) 2 PtSAc ( 12 , 75%). Similar reactions of 3 , 7 , 10 , and 4 give all- trans -AcS[(R 3 P) 2 Pt(CC) 4 ] n Pt(PR 3 ) 2 SAc (76–91%). The crystal structures of 3 , 17 , and 12 are determined. The first exhibits a chlorine–chlorine distance of 17.42 Å; those in 10 and 7 are estimated as 30.3 Å and 43.1 Å. 
    more » « less
  4. Abstract

    The synthesis of the first linear coordinated CuIIcomplex Cu{N(SiMe3)Dipp}2(1Dipp=C6H5‐2,6Pri2) and its CuIcounterpart [Cu{N(SiMe3)Dipp}2](2) is described. The formation of1proceeds through a dispersion force‐driven disproportionation, and is the reaction product of a CuIhalide and LiN(SiMe3)Dipp in a non‐donor solvent. The synthesis of2is accomplished by preventing the disproportionation into1by using the complexing agent 15‐crown‐5. EPR spectroscopy of1provides the first detailed study of a two‐coordinate transition‐metal complex indicating strong covalency in the Cu−N bonds.

     
    more » « less
  5. Half a century since the photocatalytic disproportionation of Lappert's dialkyl stannylene SnR 2 , R = CH(SiMe 3 ) 2 (1) gave the persistent trivalent radical [·SnR 3 ], the characterization of the corresponding Sn(I) product, ·SnR is now described. It was isolated as the hexastannaprismane Sn 6 R 6 (2), from the reduction of 1 by the Mg(I)-reagent, Mg(BDI Dip ) 2 , (BDI = (DipNCMe) 2 CH, Dip + 2,6-diisopropylphenyl). 
    more » « less