Abstract Donor–acceptor (D–A)‐conjugated polymers have achieved promising performance metrics in numerous optoelectronic applications that continue to motivate studying structure–property relationships and discovering new materials. Here, the materials toolbox is expanded by synthesizing D–A copolymers where 1,4‐dihydropyrrolo[3,2‐b]pyrrole (DHPP) is directly incorporated into the main chain of D–A copolymers for the first time via direct heteroarylation polymerization. Notably, the synthetic complexity of DHPP‐containing polymers coupled with thieno[3,2‐b]pyrrole‐4,6‐dione (TPD) or 3,6‐bis(2‐thienyl)‐2,5‐dihydropyrrolo[3,4‐c]pyrrole‐1,4‐dione (Th2DPP) comonomers is calculated to be lower compared to many common conjugated polymers synthesized via direct arylation. The electron‐rich nature of DHPPs when coupled with TPD or DPP enables optoelectronic properties to be manipulated, evident by measuring distinctly different absorbance and redox properties. Additionally, these D–A copolymers demonstrate their potential in organic electronic applications, such as electrochromics and organic photovoltaics. The reported DHPP‐alt‐Th2DPP copolymer is the first DHPP‐based colored‐to‐transmissive electrochrome and achieves power conversion efficiencies of ~2.5% when incorporated into bulk heterojunction solar cells. Overall, the synthetic accessibility of DHPP monomers and their propensity to participate in robust polymerizations highlights the value of establishing structure–property relationships of an underutilized scaffold. These fundamental attributes serve to inform and advance efforts in the development of DHPP‐containing copolymers for various applications.
more »
« less
Highly fluorescent purine-containing conjugated copolymers with tailored optoelectronic properties
Conjugated copolymers containing electron donor and acceptor units in their main chain have emerged as promising materials for organic electronic devices due to their tunable optoelectronic properties. Herein, we describe the use of direct arylation polymerization to create a series of fully π-conjugated copolymers containing the highly tailorable purine scaffold as a key design element. To create efficient coupling sites, dihalopurines are flanked by alkylthiophenes to create a monomer that is readily copolymerized with a variety of conjugated comonomers, ranging from electron-donating 3,4-dihydro-2 H -thieno[3,4- b ][1,4]dioxepine to electron-accepting 4,7-bis(5-bromo-3-hexylthiophen-2-yl)benzo[ c ][1,2,5]thiadiazole. The comonomer choice and electronic nature of the purine scaffold allow the photophysical properties of the purine-containing copolymers to be widely varied, with optical bandgaps ranging from 1.96–2.46 eV, and photoluminescent quantum yields as high as ϕ = 0.61. Frontier orbital energy levels determined for the various copolymers using density functional theory tight binding calculations track with experimental results, and the geometric structures of the alkylthiophene-flanked purine monomer and its copolymer are found to be nearly planar. The utility of direct arylation polymerization and intrinsic tailorability of the purine scaffold highlight the potential of these fully conjugated polymers to establish structure–property relationships based on connectivity pattern and comonomer type, which may broadly inform efforts to advance purine-containing conjugated copolymers for various applications.
more »
« less
- Award ID(s):
- 2204396
- PAR ID:
- 10434964
- Date Published:
- Journal Name:
- Polymer Chemistry
- Volume:
- 13
- Issue:
- 34
- ISSN:
- 1759-9954
- Page Range / eLocation ID:
- 4921 to 4933
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This study introduces a benzodithiophene‐S,S‐tetraoxide (BDTT) monomer as an acceptor and 3,4‐ethylenedioxythiophene flanked thiophene (TEDOT2) and terthiophene (T3) as donor molecules for polymer formation. The synthesis of thepoly(TEDOT2‐BDTT)andpoly(T3‐BDTT)copolymers was performed via a single‐step monomer radical formation that is typically associated with electropolymerization methods. The electropolymerization is controlled by using a suitable monomer stoichiometric ratio that enables the deposition of copolymer thin films on the working electrode. Resultant copolymers were investigated by electrochemical analysis and their electronic properties are discussed in detail. A low average electron transport resistance of 16.5 Ω was found forpoly(TEDOT2‐BDTT), indicating excellent conductive behavior. Solid‐state absorbance and emission studies of the copolymers show visible to near‐infrared spectral activity. Results support an effective strategy towards highly efficient electronically conducting polymers (ECPs) based on a unique BDTT monomer.more » « less
-
Direct arylation is an appealing method for preparing π-conjugated materials, avoiding the prefunctionalization required for traditional cross-coupling methods. A major effort in organic electronic materials development is improving the environmental and economic impact of production; direct arylation polymerization (DArP) is an effective method to achieve these goals. Room-temperature polymerization would further improve the cost and energy efficiencies required to prepare these materials. Reported herein is new mechanistic work studying the underlying mechanism of room temperature direct arylation between iodobenzene and indole. Results indicate that room-temperature, Pd/Ag-catalyzed direct arylation systems are radical-mediated. This is in contrast to the commonly proposed two-electron mechanisms for direct arylation and appears to extend to other substrates such as benzo[ b ]thiophene and pentafluorobenzene.more » « less
-
null (Ed.)Recent work has identified surface energy as a key figure of merit in predicting the morphology of bulk heterojunction organic solar cells and organic alloy formation in ternary blend organic solar cells. An efficient way of tuning surface energy in conjugated polymers is by introducing functionalised side chains. Here, we present a systematic study on a family of poly(3-hexylthiophene) (P3HT)-based random copolymers bearing five different functionalised side chains (ester, ether, diether, carbamate, nitrile) prepared by direct arylation polymerization (DArP) in terms of their effectiveness in tuning surface energy. This study also exemplifies the superior functional group tolerance in DArP compared to more traditional polymerization procedures. Water droplet contact angle measurements revealed that especially carbamates are highly effective in tuning surface energy, increasing the surface energy from 21.2 mN m −1 with P3HT to 25.5 mN m −1 and 28.6 mN m −1 in 25% and 50% carbamate functionalized copolymers, respectively. Importantly, by introducing a two-carbon-spacer between the conjugated backbone and the functional group, optical and electronic properties of P3HT could be largely maintained in the copolymers as determined by UV/Vis, cyclic voltammetry and space charge limited current hole mobility.more » « less
-
Abstract Alternating donor–acceptor copolymers are important materials with readily tunable optical and electronic properties. Direct arylation polymerization (DArP) is emerging as an attractive synthetic methodology for the synthesis of these polymers, avoiding the use of prefunctionalized building blocks. However, challenges remain in achieving well‐defined structure, high molecular weight, and impurity‐free polymers. Herein, a study to synthesize three well‐defined donor–acceptor copolymers through DArP is presented. Comparison of1H NMR and13C NMR, as well as optical and electrochemical properties analysis for the polymers and corresponding oligomers provides evidence for the regioregular structure of the polymers. On the basis of the chemical structure of poly(IIDCBT) and the solution electrochemical studies we surmised poly(IIDCBT) could potentially be an electron transport material for organic field‐effect transistors (OFETs), and we determined an electron mobility of 1.2×10−3 cm2 V−1 s−1for this material.more » « less