skip to main content


Title: Highly fluorescent purine-containing conjugated copolymers with tailored optoelectronic properties
Conjugated copolymers containing electron donor and acceptor units in their main chain have emerged as promising materials for organic electronic devices due to their tunable optoelectronic properties. Herein, we describe the use of direct arylation polymerization to create a series of fully π-conjugated copolymers containing the highly tailorable purine scaffold as a key design element. To create efficient coupling sites, dihalopurines are flanked by alkylthiophenes to create a monomer that is readily copolymerized with a variety of conjugated comonomers, ranging from electron-donating 3,4-dihydro-2 H -thieno[3,4- b ][1,4]dioxepine to electron-accepting 4,7-bis(5-bromo-3-hexylthiophen-2-yl)benzo[ c ][1,2,5]thiadiazole. The comonomer choice and electronic nature of the purine scaffold allow the photophysical properties of the purine-containing copolymers to be widely varied, with optical bandgaps ranging from 1.96–2.46 eV, and photoluminescent quantum yields as high as ϕ = 0.61. Frontier orbital energy levels determined for the various copolymers using density functional theory tight binding calculations track with experimental results, and the geometric structures of the alkylthiophene-flanked purine monomer and its copolymer are found to be nearly planar. The utility of direct arylation polymerization and intrinsic tailorability of the purine scaffold highlight the potential of these fully conjugated polymers to establish structure–property relationships based on connectivity pattern and comonomer type, which may broadly inform efforts to advance purine-containing conjugated copolymers for various applications.  more » « less
Award ID(s):
2204396
NSF-PAR ID:
10434964
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
13
Issue:
34
ISSN:
1759-9954
Page Range / eLocation ID:
4921 to 4933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study introduces a benzodithiophene‐S,S‐tetraoxide (BDTT) monomer as an acceptor and 3,4‐ethylenedioxythiophene flanked thiophene (TEDOT2) and terthiophene (T3) as donor molecules for polymer formation. The synthesis of thepoly(TEDOT2‐BDTT)andpoly(T3‐BDTT)copolymers was performed via a single‐step monomer radical formation that is typically associated with electropolymerization methods. The electropolymerization is controlled by using a suitable monomer stoichiometric ratio that enables the deposition of copolymer thin films on the working electrode. Resultant copolymers were investigated by electrochemical analysis and their electronic properties are discussed in detail. A low average electron transport resistance of 16.5 Ω was found forpoly(TEDOT2‐BDTT), indicating excellent conductive behavior. Solid‐state absorbance and emission studies of the copolymers show visible to near‐infrared spectral activity. Results support an effective strategy towards highly efficient electronically conducting polymers (ECPs) based on a unique BDTT monomer.

     
    more » « less
  2. The advantageous material properties that arise from combining non-polar olefin monomers with activated vinyl monomers have led to considerable progress in the development of viable copolymerization strategies. However, unfavorable reactivity ratios during radical copolymerization of the two result in low levels of olefin incorporation, and an abundance of deleterious side reactions arise when attempting to incorporate many polar vinyl monomers via the coordination–insertion pathway typically applied to olefins. We reasoned that design of an activated monomer that is not only well-suited for radical copolymerization with polar vinyl monomers ( e.g. , acrylates) but is also capable of undergoing post-polymerization modification to unveil an olefin repeat unit would allow for the preparation of statistical olefin-acrylate copolymers. Herein, we report monomers fitting these criteria and introduce a post-polymerization modification strategy based on single-electron transfer (SET)-induced decarboxylative radical generation directly on the polymer backbone. Specifically, SET from an organic photocatalyst (eosin Y) to a polymer containing redox-active phthalimide ester units under green light leads to the generation of reactive carbon-centered radicals on the polymer backbone. We utilized this approach to generate statistical olefin-acrylate copolymers by performing the decarboxylation in the presence of a hydrogen atom donor such that the backbone radical is capped by a hydrogen atom to yield an ethylene or propylene repeat unit. This method allows for the preparation of copolymers with previously inaccessible comonomer distributions and demonstrates the promise of applying SET-based transformations to address long-standing challenges in polymer chemistry. 
    more » « less
  3. null (Ed.)
    Recent work has identified surface energy as a key figure of merit in predicting the morphology of bulk heterojunction organic solar cells and organic alloy formation in ternary blend organic solar cells. An efficient way of tuning surface energy in conjugated polymers is by introducing functionalised side chains. Here, we present a systematic study on a family of poly(3-hexylthiophene) (P3HT)-based random copolymers bearing five different functionalised side chains (ester, ether, diether, carbamate, nitrile) prepared by direct arylation polymerization (DArP) in terms of their effectiveness in tuning surface energy. This study also exemplifies the superior functional group tolerance in DArP compared to more traditional polymerization procedures. Water droplet contact angle measurements revealed that especially carbamates are highly effective in tuning surface energy, increasing the surface energy from 21.2 mN m −1 with P3HT to 25.5 mN m −1 and 28.6 mN m −1 in 25% and 50% carbamate functionalized copolymers, respectively. Importantly, by introducing a two-carbon-spacer between the conjugated backbone and the functional group, optical and electronic properties of P3HT could be largely maintained in the copolymers as determined by UV/Vis, cyclic voltammetry and space charge limited current hole mobility. 
    more » « less
  4. Abstract

    3D‐printed hydrogel scaffolds functionalized with conductive polymers have demonstrated significant potential in regenerative applications for their structural tunability, physiochemical compatibility, and electroactivity. Controllably generating conductive hydrogels with fine features, however, has proven challenging. Here, micro‐continuous liquid interface production (μCLIP) method is utilized to 3D print poly(2‐hydroxyethyl methacrylate) (pHEMA) hydrogels. With a unique in‐situ polymerization approach, a sulfonated monomer is first incorporated into the hydrogel matrix and subsequently polymerized into a conjugated polyelectrolyte, poly(4‐(2,3‐dihydro‐thieno[3,4‐b][1,4]dioxin‐2‐ylmethoxy)‐butane‐1 sulfonic acid sodium salt (PEDOT‐S). Rod structures are fabricated at different crosslinking levels to investigate PEDOT‐S incorporation and its effect on bulk hydrogel electronic and mechanical properties. After demonstrating that PEDOT‐S does not significantly compromise the structures of the bulk material, pHEMA scaffolds are fabricated via μCLIP with features smaller than 100 µm. Scaffold characterization confirms PEDOT‐S incorporation bolstered conductivity while lowering overall modulus. Finally, C2C12 myoblasts are seeded on PEDOT‐pHEMA structures to verify cytocompatibility and the potential of this material in future regenerative applications. PEDOT‐pHEMA scaffolds promote increased cell viability relative to their non‐conductive counterparts and differentially influence cell organization. Taken together, this study presents a promising new approach for fabricating complex conductive hydrogel structures for regenerative applications.

     
    more » « less
  5. Abstract

    The use of direct CH arylation cross‐coupling polymerization was evaluated for the synthesis of donor–acceptor conjugated co‐polymers using the novel donor 1,6‐didecylnaphtho[1,2‐b:5,6‐b']difuran and either thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) or 1,4‐diketopyrrolo[3,4‐c]pyrrole (DPP) as the acceptor. Thiophene and furan moieties were used to flank the DPP group and the impact of these heterocycles on the polymers' properties was evaluated. The alkyl chains on the diketopyrrolopyrrole monomers were varied to engineer the solubility and morphology of the materials. All of the polymers have similar optoelectronic properties with narrow optical band gaps around 1.3 eV, which is ideal for solar energy harvesting. Unfortunately, these polymers also had high‐lying highest occupied molecular orbital levels of −4.8 to −5.1, and as a result bulk‐heterojunction photovoltaic cells fabricated using the soluble fullerene derivative PC71BM as the electron‐acceptor and these polymers as donor materials exhibited poor performance due to limited Vocvalues. An examination of the films from these blends indicates that film‐thickness and morphology were also a major hindrance to performance and a potential point of improvement for future materials.

     
    more » « less