skip to main content

This content will become publicly available on April 1, 2024

Title: Investigation of Disaster-Resilient Network-Cloud Ecosystem with Open Disaggregation and Cooperation Technologies (Invited)
We investigate the problem of future disaster-resilient optical network-cloud ecosystems. We introduce our solutions considering openness/disaggregation and cooperation for single- and multi-entity network-cloud ecosystems, respectively.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Cyber Physical Systems enabled by Sensing/Network/AI and Photonics Conference (CPS-SNAP)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the complex and unpredictable ways ecosystems are changing and predicting the state of ecosystems and the services they will provide in the future requires coordinated, long‐term research. This paper is a product of a U.S. National Science Foundation funded Long Term Ecological Research (LTER) network synthesis effort that addressed anticipated changes in future populations and communities. Each LTER site described what their site would look like in 50 or 100 yr based on long‐term patterns and responses to global change drivers in each ecosystem. Common themes emerged and predictions were grouped into state change, connectivity, resilience, time lags, and cascading effects. Here, we report on the “state change” theme, which includes examples from the Georgia Coastal (coastal marsh), Konza Prairie (mesic grassland), Luquillo (tropical forest), Sevilleta (arid grassland), and Virginia Coastal (coastal grassland) sites. Ecological thresholds (the point at which small changes in an environmental driver can produce an abrupt and persistent state change in an ecosystem quality, property, or phenomenon) were most commonly predicted. For example, in coastal ecosystems, sea‐level rise and climate change could convert salt marsh to mangroves and coastal barrier dunes to shrub thicket. Reduced fire frequency has converted grassland to shrubland in mesic prairie, whereas overgrazing combined with drought drive shrub encroachment in arid grasslands. Lastly, tropical cloud forests are susceptible to climate‐induced changes in cloud base altitude leading to shifts in species distributions. Overall, these examples reveal that state change is a likely outcome of global environmental change across a diverse range of ecosystems and highlight the need for long‐term studies to sort out the causes and consequences of state change. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about state changes as an important driver of ecosystem structure, function, services, and futures.

    more » « less
  2. We investigate the problem of enhancing the resilience of future optical network-cloud ecosystems. We introduce new solutions to build disaster-resilient single-and multi-entity network-cloud ecosystems with openness, disaggregation, and cooperation between networks and clouds.

    more » « less
  3. Large-scale network-cloud ecosystems are fundamental infrastructures to support future 5G/6G services, and their resilience is a primary societal concern for the years to come. Differently from a single-entity ecosystem (in which one entity owns the whole infrastructure), in multi-entity ecosystems (in which the networks and datacenters are owned by different entities) cooperation among such different entities is crucial to achieve resilience against large-scale failures. Such cooperation is challenging since diffident entities may not disclose confidential information, e.g., detailed resource availability. To enhance the resilience of multi-entity ecosystems, carriers are important as all the entities rely on carriers’ communication services. Thus, in this study we investigate how to perform carrier cooperative recovery in case of large-scale failures/disasters. We propose a two-stage cooperative recovery planning by incorporating a coordinated scheduling for swift recovery. Through preliminary numerical evaluation, we confirm the potential benefit of carrier cooperation in terms of both recovery time and recovery cost/burden reduction. 
    more » « less
  4. The management of drinking water quality is critical to public health and can benefit from techniques and technologies that support near real-time forecasting of lake and reservoir conditions. The cyberinfrastructure (CI) needed to support forecasting has to overcome multiple challenges, which include: 1) deploying sensors at the reservoir requires the CI to extend to the network’s edge and accommodate devices with constrained network and power; 2) different lakes need different sensor modalities, deployments, and calibrations; hence, the CI needs to be flexible and customizable to accommodate various deployments; and 3) the CI requires to be accessible and usable to various stakeholders (water managers, reservoir operators, and researchers) without barriers to entry. This paper describes the CI underlying FLARE (Forecasting Lake And Reservoir Ecosystems), a novel system co-designed in an interdisciplinary manner between CI and domain scientists to address the above challenges. FLARE integrates R packages that implement the core numerical forecasting (including lake process modeling and data assimilation) with containers, overlay virtual networks, object storage, versioned storage, and event-driven Function-as-a-Service (FaaS) serverless execution. It is a flexible forecasting system that can be deployed in different modalities, including the Manual Mode suitable for end-users’ personal computers and the Workflow Mode ideal for cloud deployment. The paper reports on experimental data and lessons learned from the operational deployment of FLARE in a drinking water supply (Falling Creek Reservoir in Vinton, Virginia, USA). Experiments with a FLARE deployment quantify its edge-to-cloud virtual network performance and serverless execution in OpenWhisk deployments on both XSEDE-Jetstream and the IBM Cloud Functions FaaS system. 
    more » « less
  5. Zero trust (ZT) is the term for an evolving set of cybersecurity paradigms that move defenses from static, network-based perimeters to focus on users, assets, and resources. It assumes no implicit trust is granted to assets or user accounts based solely on their physical or network location. We have billions of devices in IoT ecosystems connected to enable smart environments, and these devices are scattered around different locations, sometimes multiple cities or even multiple countries. Moreover, the deployment of resource-constrained devices motivates the integration of IoT and cloud services. This adoption of a plethora of technologies expands the attack surface and positions the IoT ecosystem as a target for many potential security threats. This complexity has outstripped legacy perimeter-based security methods as there is no single, easily identified perimeter for different use cases in IoT. Hence, we believe that the need arises to incorporate ZT guiding principles in workflows, systems design, and operations that can be used to improve the security posture of IoT applications. This paper motivates the need to implement ZT principles when developing access control models for smart IoT systems. It first provides a structured mapping between the ZT basic tenets and the PEI framework when designing and implementing a ZT authorization system. It proposes the ZT authorization requirements framework (ZT-ARF), which provides a structured approach to authorization policy models in ZT systems. Moreover, it analyzes the requirements of access control models in IoT within the proposed ZT-ARF and presents the vision and need for a ZT score-based authorization framework (ZT-SAF) that is capable of maintaining the access control requirements for ZT IoT connected systems. 
    more » « less