skip to main content


Title: Transactional Composition of Nonblocking Data Structures
We introduce nonblocking transaction composition (NBTC), a new methodology for atomic composition of nonblocking operations on concurrent data structures. Unlike previous software transactional memory (STM) approaches, NBTC leverages the linearizability of existing nonblocking structures, reducing the number of memory accesses that must be executed together, atomically, to only one per operation in most cases (these are typically the linearizing instructions of the constituent operations). Our obstruction-free implementation of NBTC, which we call Medley, makes it easy to transform most nonblocking data structures into transactional counterparts while preserving their nonblocking liveness and high concurrency. In our experiments, Medley outperforms Lock-Free Transactional Transform (LFTT), the fastest prior competing methodology, by 40--170%. The marginal overhead of Medley's transactional composition, relative to separate operations performed in succession, is roughly 2.2×. For persistent memory, we observe that failure atomicity for transactions can be achieved "almost for free" with epoch-based periodic persistence. Toward that end, we integrate Medley with nbMontage, a general system for periodically persistent data structures. The resulting txMontage provides ACID transactions and achieves throughput up to two orders of magnitude higher than that of the OneFile persistent STM system.  more » « less
Award ID(s):
1955498 1900803 1717712
PAR ID:
10435027
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming (PPoPP)
Page Range / eLocation ID:
441-443
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces nonblocking transaction composition (NBTC), a new methodology for atomic composition of nonblocking operations on concurrent data structures. Unlike previous software transactional memory (STM) approaches, NBTC leverages the linearizability of existing nonblocking structures, reducing the number of memory accesses that must be executed together, atomically, to only one per operation in most cases (these are typically the linearizing instructions of the constituent operations). Our obstruction-free implementation of NBTC, which we call Medley, makes it easy to transform most nonblocking data structures into transactional counterparts while preserving their liveness and high concurrency. In our experiments, Medley outperforms Lock-Free Transactional Transform (LFTT), the fastest prior competing methodology, by 40--170%. The marginal overhead of Medley's transactional composition, relative to separate operations performed in succession, is roughly 2.2x. For persistent data structures, we observe that failure atomicity for transactions can be achieved "almost for free'' with epoch-based periodic persistence. Toward that end, we integrate Medley with nbMontage, a general system for periodically persistent data structures. The resulting txMontage provides ACID transactions and achieves throughput up to two orders of magnitude higher than that of the OneFile persistent STM system. 
    more » « less
  2. null (Ed.)
    Newly emerging nonvolatile alternatives to DRAM raise the possibility that applications might compute directly on long-lived data, rather than serializing them to and from a file system or database. To ensure crash consistency, such data must, like a file system or database, provide failure-atomic transactional semantics. Several persistent software transactional memory (STM) systems have been devised to provide these semantics, but only one—the OneFile system of Ramalhete et al.—is nonblocking. Nonblocking progress is desirable to avoid both performance anomalies due to process preemption or failures and deadlock due to priority inversion. Unfortunately, OneFile achieves nonblocking progress at the cost of 2× space overhead, sacrificing much of the cost and density benefit of nonvolatile memory relative to DRAM. OneFile also requires extensive and intrusive changes to data declarations, and works only on a machine with double-width compare-and-swap (CAS) or load-linked/store-conditional (LL/SC) instructions. To address these limitations, we introduce QSTM, a nonblocking persistent STM that requires neither the modification of target data structures nor the availability of a wide CAS instruction. We describe our system, give arguments for safety and liveness, and compare performance to that of the Mnemosyne and OneFile persistent STM systems. We argue that modest performance costs (within a factor of 2 of OneFile in almost all cases) are easily justified by dramatically lower space overhead and higher programmer convenience. 
    more » « less
  3. While developed largely for higher density and lower power, byte-addressable nonvolatile memory can also allow data to persist across program runs and system crashes without the need to flush to disk or flash. If data is to be recovered after a crash, however, care must be taken to ensure that the contents of memory are consistent at all times. This can be challenging in multithreaded applications with write-back caches. We present QSTM, a persistent word-based software transactional memory (STM) system to address this problem. Unlike past such systems, QSTM is nonblocking and does not require either the modification of target data structures or the use of a wide CAS instruction. 
    more » « less
  4. null (Ed.)
    Byte-addressable, non-volatile, random access memory (NVM) has the potential to dramatically accelerate the performance of storage-intensive workloads. For applications with irregular data access patterns, and applications that rely on ad-hoc data structures, the most promising model for interacting with NVM is a transactional model. However, the specifics of the model matter significantly. We introduce two models for programming persistent transactions. We show how to build concurrent persistent transactional memory from traditional software transactional memories. We then introduce general and model-specific optimizations that can substantially improve the performance of persistent transactions. Our evaluation shows a substantial improvement in the both the latency and scalability of persistent transactions. 
    more » « less
  5. Summary

    This paper presents an extended version of our previous work on using compiler technology to automatically convert sequential C++ data abstractions, for example, queues, stacks, maps, and trees, to concurrent lock‐free implementations. A key difference between our work and existing research in software transactional memory (STM) is that our compiler‐based approach automatically selects the best state‐of‐the‐practice nonblocking synchronization method for the underlying sequential implementation of the data structure. The extended material includes a broader collection of the state‐of‐the‐practice lock‐free synchronization techniques, additional formal correctness proofs of the overall integration of the different synchronizations in our system, and a more comprehensive experimental study of the integrated techniques. We evaluate our compiler‐generated nonblocking data structures both by using a collection of micro‐benchmarks, including the Synchrobench suite, and by using a multi‐threaded application Dedup from PARSEC. Our automatically synchronized code attains performance competitive to that of concurrent data structures manually‐written by experts and much better performance than heavier‐weight support by STM.

     
    more » « less