skip to main content

Title: Quantifying the Impact of XR Visual Guidance on User Performance Using a Large-Scale Virtual Assembly Experiment
The combination of Visual Guidance and Extended Reality (XR) technology holds the potential to greatly improve the performance of human workforces in numerous areas, particularly industrial environments. Focusing on virtual assembly tasks and making use of different forms of supportive visualisations, this study investigates the potential of XR Visual Guidance. Set in a web-based immersive environment, our results draw from a heterogeneous pool of 199 participants. This research is designed to significantly differ from previous exploratory studies, which yielded conflicting results on user performance and associated human factors. Our results clearly show the advantages of XR Visual Guidance based on an over 50% reduction in task completion times and mistakes made; this may further be enhanced and refined using specific frameworks and other forms of visualisations/Visual Guidance. Discussing the role of other factors, such as cognitive load, motivation, and usability, this paper also seeks to provide concrete avenues for future research and practical takeaways for practitioners.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE transactions on visualization and computer graphics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. There is a lack of datasets for visual-inertial odometry applications in Extended Reality (XR). To the best of our knowledge, there is no dataset available that is captured from an XR headset with a human as a carrier. To bridge this gap, we present a novel pose estimation dataset --- called HoloSet --- collected using Microsoft Hololens 2, which is a state-of-the-art head mounted device for XR. Potential applications for HoloSet include visual-inertial odometry, simultaneous localization and mapping (SLAM), and additional applications in XR that leverage visual-inertial data. HoloSet captures both macro and micro movements. For macro movements, the dataset consists of more than 66,000 samples of visual, inertial, and depth camera data in a variety of environments (indoor, outdoor) and scene setups (trails, suburbs, downtown) under multiple user action scenarios (walk, jog). For micro movements, the dataset consists of more than 12,000 samples of additional articulated hand depth camera images while a user plays games that exercise fine motor skills and hand-eye coordination. We present basic visualizations and high-level statistics of the data and outline the potential research use cases for HoloSet. 
    more » « less
  2. This article provides a systematic review of research related to Human–Computer Interaction techniques supporting training and learning in various domains including medicine, healthcare, and engineering. The focus is on HCI techniques involving Extended Reality (XR) technology which encompasses Virtual Reality, Augmented Reality, and Mixed Reality. HCI-based research is assuming more importance with the rapid adoption of XR tools and techniques in various training and learning contexts including education. There are many challenges in the adoption of HCI approaches, which results in a need to have a comprehensive and systematic review of such HCI methods in various domains. This article addresses this need by providing a systematic literature review of a cross-s Q1 ection of HCI approaches involving proposed so far. The PRISMA-guided search strategy identified 1156 articles for abstract review. Irrelevant abstracts were discarded. The whole body of each article was reviewed for the remaining articles, and those that were not linked to the scope of our specific issue were also eliminated. Following the application of inclusion/exclusion criteria, 69 publications were chosen for review. This article has been divided into the following sections: Introduction; Research methodology; Literature review; Threats of validity; Future research and Conclusion. Detailed classifications (pertaining to HCI criteria and concepts, such as affordance; training, and learning techniques) have also been included based on different parameters based on the analysis of research techniques adopted by various investigators. The article concludes with a discussion of the key challenges for this HCI area along with future research directions. A review of the research outcomes from these publications underscores the potential for greater success when such HCI-based approaches are adopted during such 3D-based training interactions. Such a higher degree of success may be due to the emphasis on the design of userfriendly (and user-centric) training environments, interactions, and processes that positively impact the cognitive abilities of users and their respective learning/training experiences. We discovered data validating XR-HCI as an ascending method that brings a new paradigm by enhancing skills and safety while reducing costs and learning time through replies to three exploratory study questions. We believe that the findings of this study will aid academics in developing new research avenues that will assist XR-HCI applications to mature and become more widely adopted. 
    more » « less
  3. null (Ed.)
    Introduction: Vaso-occlusive crises (VOCs) are a leading cause of morbidity and early mortality in individuals with sickle cell disease (SCD). These crises are triggered by sickle red blood cell (sRBC) aggregation in blood vessels and are influenced by factors such as enhanced sRBC and white blood cell (WBC) adhesion to inflamed endothelium. Advances in microfluidic biomarker assays (i.e., SCD Biochip systems) have led to clinical studies of blood cell adhesion onto endothelial proteins, including, fibronectin, laminin, P-selectin, ICAM-1, functionalized in microchannels. These microfluidic assays allow mimicking the physiological aspects of human microvasculature and help characterize biomechanical properties of adhered sRBCs under flow. However, analysis of the microfluidic biomarker assay data has so far relied on manual cell counting and exhaustive visual morphological characterization of cells by trained personnel. Integrating deep learning algorithms with microscopic imaging of adhesion protein functionalized microfluidic channels can accelerate and standardize accurate classification of blood cells in microfluidic biomarker assays. Here we present a deep learning approach into a general-purpose analytical tool covering a wide range of conditions: channels functionalized with different proteins (laminin or P-selectin), with varying degrees of adhesion by both sRBCs and WBCs, and in both normoxic and hypoxic environments. Methods: Our neural networks were trained on a repository of manually labeled SCD Biochip microfluidic biomarker assay whole channel images. Each channel contained adhered cells pertaining to clinical whole blood under constant shear stress of 0.1 Pa, mimicking physiological levels in post-capillary venules. The machine learning (ML) framework consists of two phases: Phase I segments pixels belonging to blood cells adhered to the microfluidic channel surface, while Phase II associates pixel clusters with specific cell types (sRBCs or WBCs). Phase I is implemented through an ensemble of seven generative fully convolutional neural networks, and Phase II is an ensemble of five neural networks based on a Resnet50 backbone. Each pixel cluster is given a probability of belonging to one of three classes: adhered sRBC, adhered WBC, or non-adhered / other. Results and Discussion: We applied our trained ML framework to 107 novel whole channel images not used during training and compared the results against counts from human experts. As seen in Fig. 1A, there was excellent agreement in counts across all protein and cell types investigated: sRBCs adhered to laminin, sRBCs adhered to P-selectin, and WBCs adhered to P-selectin. Not only was the approach able to handle surfaces functionalized with different proteins, but it also performed well for high cell density images (up to 5000 cells per image) in both normoxic and hypoxic conditions (Fig. 1B). The average uncertainty for the ML counts, obtained from accuracy metrics on the test dataset, was 3%. This uncertainty is a significant improvement on the 20% average uncertainty of the human counts, estimated from the variance in repeated manual analyses of the images. Moreover, manual classification of each image may take up to 2 hours, versus about 6 minutes per image for the ML analysis. Thus, ML provides greater consistency in the classification at a fraction of the processing time. To assess which features the network used to distinguish adhered cells, we generated class activation maps (Fig. 1C-E). These heat maps indicate the regions of focus for the algorithm in making each classification decision. Intriguingly, the highlighted features were similar to those used by human experts: the dimple in partially sickled RBCs, the sharp endpoints for highly sickled RBCs, and the uniform curvature of the WBCs. Overall the robust performance of the ML approach in our study sets the stage for generalizing it to other endothelial proteins and experimental conditions, a first step toward a universal microfluidic ML framework targeting blood disorders. Such a framework would not only be able to integrate advanced biophysical characterization into fast, point-of-care diagnostic devices, but also provide a standardized and reliable way of monitoring patients undergoing targeted therapies and curative interventions, including, stem cell and gene-based therapies for SCD. Disclosures Gurkan: Dx Now Inc.: Patents & Royalties; Xatek Inc.: Patents & Royalties; BioChip Labs: Patents & Royalties; Hemex Health, Inc.: Consultancy, Current Employment, Patents & Royalties, Research Funding. 
    more » « less
  4. null (Ed.)
    Psychologists recognize Raven’s Progressive Matrices as a useful test of general human intelligence. While many computational models investigate various forms of top-down, deliberative reasoning on the test, there has been less research on bottom-up perceptual processes, like Gestalt image completion, that are also critical in human test performance. In this work, we investigate how Gestalt visual reasoning on the Raven’s test can be modeled using generative image inpainting techniques from computer vision. We demonstrate that a reasoning agent that has access to an off- the-shelf inpainting model trained only on photorealistic images of objects achieves a score of 27/36 on the Colored Progressive Matrices, which corresponds to average performance for nine-year-old children. We also show that when our agent uses inpainting models trained on other datasets (faces, places, and textures), it does not perform as well. Our results illustrate how learning visual regularities in real-world images can translate into successful reasoning about artificial test stimuli. On the flip side, our results also highlight the limitations of such transfer, which may contribute to explanations for why intelligence tests like the Raven’s are often sensitive to people’s individual sociocultural backgrounds. 
    more » « less
  5. Moghaddam, Mohsen ; Marion, Tucker ; Holtta-Otto, Katja ; Fu, Kate ; Olechowski, Alison ; McComb, Christopher (Ed.)
    The early-stage product design and development (PDD) process fundamentally involves the processing, synthesis, and communication of a large amount of information to make a series of key decisions on design exploration and specification, concept generation and evaluation, and prototyping. Although most current PDD practices depend heavily on human intuition, advances in computing, communication, and human–computer interaction technologies can transform PDD processes by combining the creativity and ingenuity of human designers with the speed and precision of computers. Emerging technologies like artificial intelligence (AI), cloud computing, and extended reality (XR) stand to substantially change the way designers process information and make decisions in the early stages of PDD by enabling new methods such as natural language processing, generative modeling, cloud-based virtual collaboration, and immersive design and prototyping. These new technologies are unlikely to render the human designer obsolete, but rather do change the role that the human designer plays. Thus, it is essential to understand the designer's role as an individual, a team, and a group that forms an organization. The purpose of this special issue is to synthesize the state-of-the-art research on technologies and methods that augment the performance of designers in the front-end of PDD—from understanding user needs to conceptual design, prototyping, and development of systems architecture while also emphasizing the critical need to understand the designer and their role as well. 
    more » « less