skip to main content

Title: Energy Repartition and Entropy Generation across the Earth’s Bow Shock: MMS Observations

The evolution of plasma entropy and the process of plasma energy redistribution at the collisionless plasma shock front are evaluated based on the high temporal resolution data from the four Magnetospheric Multiscale spacecraft during the crossing of the terrestrial bow shock. The ion distribution function has been separated into the populations with different characteristic behaviors in the vicinity of the shock: the upstream core population, the reflected ions, the gyrating ions, the ions trapped in the vicinity of the shock, and the downstream core population. The values of ion and electron moments (density, bulk velocity, and temperature) have been determined separately for these populations. It is shown that the solar wind core population bulk velocity slows down mainly in the ramp with the electrostatic potential increase but not in the foot region as it was supposed. The reflected ion population determines the foot region properties, so the proton temperature peak in the foot region is an effect of the relative motion of the different ion populations, rather than an actual increase in the thermal speed of any of the ion population. The ion entropy evaluated showed a significant increase across the shock: the enhancement of the ion entropy occurs in the foot of the shock front and at the ramp, where the reflected ions are emerging in addition to the upstream solar wind ions, the anisotropy growing to generate the bursts of ion-scale electrostatic waves. The entropy of electrons across the shock does not show a significant change: electron heating goes almost adiabatically.

more » « less
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Article No. 154
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Over the last few decades, different types of plasma waves (e.g., the ion acoustic waves (IAWs), electrostatic solitary waves, upper/lower hybrid waves, and Langmuir waves) have been observed in the upstream, downstream, and ramp regions of the collisionless interplanetary (IP) shocks. These waves may appear as short-duration (only a few milliseconds at 1 au) electric field signatures in the in-situ measurements, with typical frequencies of ∼1–10 kHz. A number of IAW features at the IP shocks seem to be unexplained by kinetic models and require a new modeling effort. Thus, this paper is dedicated to bridging this gap in understanding. In this paper, we model the linear IAWs inside the shock ramp by devising a novel linearization method for the two-fluid magnetohydrodynamic equations with spatially dependent shock parameters. It is found that, for parallel propagating waves, the linear dispersion relation leads to a finite growth rate, which is dependent on the shock density compression ratio, as Wind data suggest. Further analysis reveals that the wave frequency grows towards the downstream region within the shock ramp, and the wave growth rate is independent of the electron-to-ion temperature ratio, as Magnetospheric Multiscale (MMS) in-situ measurements suggest, and is uniform within the shock ramp. Thus, this study helps in understanding the characteristics of the IAWs at the collisionless IP shocks.

    more » « less
  2. The current state of the art thermal particle measurements in the solar wind are insufficient to address many long standing, fundamental physical processes. The solar wind is a weakly collisional ionized gas experiencing collective effects due to long-range electromagnetic forces. Unlike a collisionally mediated fluid like Earth’s atmosphere, the solar wind is not in thermodynamic or thermal equilibrium. For that reason, the solar wind exhibits multiple particle populations for each particle species. We can mostly resolve the three major electron populations (e.g., core, halo, strahl, and superhalo) in the solar wind. For the ions, we can sometimes separate the proton core from a secondary proton beam and heavier ion species like alpha-particles. However, as the solar wind becomes cold or hot, our ability to separate these becomes more difficult. Instrumental limitations have prevented us from properly resolving features within each ion population. This destroys our ability to properly examine energy budgets across transient, discontinuous phenomena (e.g., shock waves) and the evolution of the velocity distribution functions. Herein we illustrate both the limitations of current instrumentation and why higher resolutions are necessary to properly address the fundamental kinetic physics of the solar wind. This is accomplished by directly comparing to some current solar wind observations with calculations of velocity moments to illustrate the inaccuracy and incompleteness of poor resolution data. 
    more » « less
  3. null (Ed.)
    We present a drift kinetic model for the free expansion of a thermal plasma out of a magnetic nozzle. This problem relates to plasma space propulsion systems, natural environments such as the solar wind, and end losses from the expander region of mirror magnetically confined fusion concepts such as the gas dynamic trap. The model incorporates trapped and passing orbit types encountered in the mirror expander geometry and maps to an upstream thermal distribution. This boundary condition and quasineutrality require the generation of an ambipolar potential drop of 5Te=e, forming a thermal barrier for the electrons. The model for the electron and ion velocity distributions and fluid moments is confirmed with data from a fully kinetic simulation. Finally, the model is extended to account for a population of fast sloshing ions arising from neutral beam heating within a magnetic mirror, again resulting in good agreement with a corresponding kinetic simulation. 
    more » « less
  4. Abstract Nonthermal, pickup ions (PUIs) represent an energetic component of the solar wind (SW). While a number of theoretical models have been proposed to describe the PUI flow, of major importance are in situ measurements providing us with the vital source of model validation. The Solar Wind Ion Composition Spectrometer (SWICS) instrument on board the Ulysses spacecraft was specifically designed for this purpose. Zhang et al. proposed a new, accurate method for the derivation of ion velocity distribution function in the SW frame on the basis of count rates collected by SWICS. We calculate the moments of these distribution functions for protons (H + ) and He + ions along the Ulysses trajectory for a period of 2 months including the Halloween 2003 solar storm. This gives us the time distributions of PUI density and temperature. We compare these with the results obtained earlier for the same interval of time, in which the ion spectra are converted to the SW frame using the narrow-beam approximation. Substantial differences are identified, which are of importance for the interpretation of PUI distributions in the 3D, time-dependent heliosphere. We also choose one of the shocks crossed by Ulysses during this time interval and analyze the distribution functions and PUI bulk properties in front of and behind it. The results are compared with the test-particle calculations and diffusive shock acceleration theory. 
    more » « less
  5. Abstract

    The nature of the 3‐s ultralow frequency (ULF) wave in the Earth's foreshock region and the associated wave‐particle interaction are not yet well understood. We investigate the 3‐s ULF waves using Magnetospheric Multiscale (MMS) observations. By combining the plasma rest frame wave properties obtained from multiple methods with the instability analysis based on the velocity distribution in the linear wave stage, the ULF wave is determined to be due to the ion/ion nonresonant mode instability. The interaction between the wave and ions is analyzed using the phase relationship between the transverse wave fields and ion velocities and using the longitudinal momentum equation. During the stage when ULF waves have sinusoidal waveforms up to |dB|/|B0| ~ 3, wheredBis the wave magnetic field andB0is the background magnetic field, the wave electric fields perpendicular toB0do negative work to solar wind ions; alongB0, a longitudinal electric field develops, but theV × Bforce is stronger and leads to solar wind ion deceleration. During the same wave stage, the backstreaming beam ions gain energy from the transverse wave fields and get deceleration alongB0by the longitudinal electric field. The ULF wave leads to electron heating, preferentially in the direction perpendicular to the local magnetic field. Secondary waves are generated within the ULF waveforms, including whistler waves near half of the electron cyclotron frequency, high‐frequency electrostatic waves, and magnetosonic whistler waves. The work improves the understanding of the nature of 3‐s ULF waves and the associated wave‐particle interaction.

    more » « less