skip to main content


Title: When adaptation is slowed down: Genomic analysis of evolutionary stasis in thermal tolerance during biological invasion in a novel climate
Abstract

Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)—a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long‐range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome‐wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.

 
more » « less
NSF-PAR ID:
10435193
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
33
Issue:
10
ISSN:
0962-1083
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As anthropogenic activities are increasing the frequency and severity of droughts, understanding whether and how fast populations can adapt to sudden changes in their hydric environment is critically important. Here, we capitalize on the introduction of the Cuban brown anole lizard (Anolis sagrei) in North America to assess the contemporary evolution of a widespread terrestrial vertebrate to an abrupt climatic niche shift. We characterized hydric balance in 30 populations along a large climatic gradient. We found that while evaporative and cutaneous water loss varied widely, there was no climatic cline, as would be expected under adaptation. Furthermore, the skin of lizards from more arid environments was covered with smaller scales, a condition thought to limit water conservation and thus be maladaptive. In contrast to environmental conditions, genome-averaged ancestry was a significant predictor of water loss. This was reinforced by our genome-wide association analyses, which indicated a significant ancestry-specific effect for water loss at one locus. Thus, our study indicates that the water balance of invasive brown anoles is dictated by an environment-independent introduction and hybridization history and highlights genetic interactions or genetic correlations as factors that might forestall adaptation. Alternative water conservation strategies, including behavioral mitigation, may influence the brown anole invasion success and require future examination.

     
    more » « less
  2. Abstract

    Understanding the mechanisms that produce variation in thermal performance is a key component to investigating climatic effects on evolution and adaptation. However, disentangling the effects of local adaptation and phenotypic plasticity in shaping patterns of geographic variation in natural populations can prove challenging. Additionally, the physiological mechanisms that cause organismal dysfunction at extreme temperatures are still largely under debate. Using the green anole,Anolis carolinensis, we integrate measures of cold tolerance (CTmin), standard metabolic rate, heart size, blood lactate concentration andRNAseq data from liver tissue to investigate geographic variation in cold tolerance and its underlying mechanisms along a latitudinal cline. We found significant effects of thermal acclimation and latitude of origin on variation in cold tolerance. Increased cold tolerance correlates with decreased rates of oxygen consumption and blood lactate concentration (a proxy for oxygen limitation), suggesting elevated performance is associated with improved oxygen economy during cold exposure. Consistent with these results, co‐expression modules associated with blood lactate concentration are enriched for functions associated with blood circulation, coagulation and clotting. Expression of these modules correlates with thermal acclimation and latitude of origin. Our findings support the oxygen and capacity‐limited thermal tolerance hypothesis as a potential contributor to variation in reptilian cold tolerance. Moreover, differences in gene expression suggest regulation of the blood coagulation cascade may play an important role in reptilian cold tolerance and may be the target of natural selection in populations inhabiting colder environments.

     
    more » « less
  3. Abstract

    As humans cause the redistribution of species ranges, hybridization between previously allopatric species is on the rise. Such hybridization can have complex effects on overall fitness of native species as new allelic combinations are tested. Widespread species introductions provide a unique opportunity to study selection on introgressed alleles in independent, replicated populations. We examined selection on alleles that repeatedly introgressed from introduced rainbow trout (Oncorhynchus mykiss) into native westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations in western Canada. We found that the degree of introgression of individual single nucleotide polymorphisms from the invasive species into the native is correlated between independent watersheds. A number of rainbow trout alleles have repeatedly swept to high frequency in native populations, suggesting parallel adaptive advantages. Using simulations, we estimated large selection coefficients up to 0.05 favoring several rainbow trout alleles in the native background. Although previous studies have found reduced hybrid fitness and genome‐wide resistance to introgression in westslope cutthroat trout, our results suggest that some introduced genomic regions are strongly favored by selection. Our study demonstrates the utility of replicated introductions as case studies for understanding parallel adaptation and the interactions between selection and introgression across the genome. We suggest that understanding this variation, including consideration of beneficial alleles, can inform management strategies for hybridizing species.

     
    more » « less
  4. The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape. 
    more » « less
  5. Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.

     
    more » « less