skip to main content


Title: What Research Can DO: Rethinking Qualitative Research Designs to Promote Change Towards Equity and Inclusion
Award ID(s):
2114242
NSF-PAR ID:
10435227
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Studies in engineering education
Volume:
4
Issue:
1
ISSN:
2690-5450
Page Range / eLocation ID:
26-45
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Undergraduate instructional biology laboratories are typically taught within two paradigms. Some labs focus on protocols and techniques delivered in “cookbook” format with defined experimental outcomes. There is increasing momentum to alternatively employ student-driven, open-ended, and discovery-based strategies, oftenviacourse-based undergraduate research experiences (CUREs) using crowd-sourcing initiatives. A fraction of students also participate in funded research in faculty research labs, where they have opportunities to work on projects designed to expand the frontiers of human knowledge. These experiences are widely recognized as valuable but are not scalable, as most institutions have many more undergraduates than research lab positions. We sought to address this gap through our department’s curriculum by creating an opportunity for students to participate in the real-world research process within a laboratory course. We conceived, developed, and delivered an authentic, guided research experience to students in an upper-level molecular biology laboratory course. We refer to this model as a “research program-linked CURE.” The research questions come directly from a faculty member’s research lab and evolve along with that research program. Students study post-transcriptional regulation in mycobacteria. We use current molecular biology methodologies to test hypotheses like “UTRs affect RNA and protein expression levels,” “there is functional redundancy among RNA helicases,” and “carbon starvation alters mRNA 5′ end chemistries.” We conducted standard assessments and developed a customized “Skills and Concepts Inventory” survey to gauge how well the course met our student learning outcomes. We report the results of our assessments and describe challenges addressed during development and execution of the course, including organizing activities to fit within an instructional lab, balancing breadth with depth, and maintaining authenticity while giving students the experience of obtaining interpretable and novel results. Our data suggest student learning was enhanced through this truly authentic research approach. Further, students were able to perceive they were participants and contributors within an active research paradigm. Students reported increases in their self-identification as scientists, and a positive impact on their career trajectories. An additional benefit was reciprocation back to the funded research laboratory, by funneling course alumni, results, materials, and protocols.

     
    more » « less
  2. ABSTRACT Radiocarbon ( 14 C) is an isotopic tracer used to address a wide range of scientific research questions. However, contamination by elevated levels of 14 C is deleterious to natural-level laboratory workspaces and accelerator mass spectrometer facilities designed to precisely measure small amounts of 14 C. The risk of contaminating materials and facilities intended for natural-level 14 C with elevated-level 14 C-labeled materials has dictated near complete separation of research groups practicing profoundly different measurements. Such separation can hinder transdisciplinary research initiatives, especially in remote and isolated field locations where both natural-level and elevated-level radiocarbon applications may be useful. This paper outlines the successful collaboration between researchers making natural-level 14 C measurements and researchers using 14 C-labeled materials during a subglacial drilling project in West Antarctica (SALSA 2018–2019). Our strict operating protocol allowed us to successfully carry out 14 C labeling experiments within close quarters at our remote field camp without contaminating samples of sediment and water intended for natural level 14 C measurements. Here we present our collaborative protocol for maintaining natural level 14 C cleanliness as a framework for future transdisciplinary radiocarbon collaborations. 
    more » « less
  3. null (Ed.)
    ABSTRACT Calls for early exposure of all undergraduates to research have led to the increased use and study of course-based research experiences (CREs). CREs have been shown to increase measures of persistence in the sciences, such as science identity, scientific self-efficacy, project ownership, scientific community values, and networking. However, implementing CREs can be challenging and resource-intensive. These barriers may be partly mitigated by the use of short-term CRE modules rather than semester- or year-long projects. One study has shown that a CRE module captures some of the known benefits of CREs as measured by the Persistence in the Sciences (PITS) survey. Here, we used this same survey to assess outcomes for introductory biology students who completed a semester of modular CREs based on faculty research at an R1 university. The results indicated levels of self-efficacy, science community values, and science identity similar to those previously reported for students in the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) full-semester CRE. Scores for project ownership (content) were between previously reported traditional lab and CRE scores, while project ownership (emotion) and networking were similar to those of traditional labs. Our results suggest that modular CREs can lead to significant gains in student affect measures that have been linked to persistence in the sciences in other studies. Although gains were not as great in all measures as with a semester-long CRE, implementation of modular CREs may be more feasible and offers the added benefits of exposing students to diverse research fields and lab techniques. 
    more » « less