Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are distinctive archaeal membrane-spanning lipids with up to eight cyclopentane rings and/or one cyclohexane ring. The number of rings added to the GDGT core structure can vary as a function of environmental conditions, such as changes in growth temperature. This physiological response enables cyclic GDGTs preserved in sediments to be employed as proxies for reconstructing past global and regional temperatures and to provide fundamental insights into ancient climate variability. Yet, confidence in GDGT-based paleotemperature proxies is hindered by uncertainty concerning the archaeal communities contributing to GDGT pools in modern environments and ambiguity in the environmental and physiological factors that affect GDGT cyclization in extant archaea. To properly constrain these uncertainties, a comprehensive understanding of GDGT biosynthesis is required. Here, we identify 2 GDGT ring synthases, GrsA and GrsB, essential for GDGT ring formation in Sulfolobus acidocaldarius . Both proteins are radical S-adenosylmethionine proteins, indicating that GDGT cyclization occurs through a free radical mechanism. In addition, we demonstrate that GrsA introduces rings specifically at the C-7 position of the core GDGT lipid, while GrsB cyclizes at the C-3 position, suggesting that cyclization patterns are differentially controlled by 2 separate enzymes and potentially influenced by distinct environmental factors. Finally, phylogenetic analyses of the Grs proteins reveal that marine Thaumarchaeota, and not Euryarchaeota, are the dominant source of cyclized GDGTs in open ocean settings, addressing a major source of uncertainty in GDGT-based paleotemperature proxy applications.
more »
« less
Archaeal lipids trace ecology and evolution of marine ammonia-oxidizing archaea
Archaeal membrane lipids are widely used for paleotemperature reconstructions, yet these molecular fossils also bear rich information about ecology and evolution of marine ammonia-oxidizing archaea (AOA). Here we identified thermal and nonthermal behaviors of archaeal glycerol dialkyl glycerol tetraethers (GDGTs) by comparing the GDGT-based temperature index (TEX 86 ) to the ratio of GDGTs with two and three cyclopentane rings (GDGT-2/GDGT-3). Thermal-dependent biosynthesis should increase TEX 86 and decrease GDGT-2/GDGT-3 when the ambient temperature increases. This presumed temperature-dependent (PTD) trend is observed in GDGTs derived from cultures of thermophilic and mesophilic AOA. The distribution of GDGTs in suspended particulate matter (SPM) and sediments collected from above the pycnocline—shallow water samples—also follows the PTD trend. These similar GDGT distributions between AOA cultures and shallow water environmental samples reflect shallow ecotypes of marine AOA. While there are currently no cultures of deep AOA clades, GDGTs derived from deep water SPM and marine sediment samples exhibit nonthermal behavior deviating from the PTD trend. The presence of deep AOA increases the GDGT-2/GDGT-3 ratio and distorts the temperature-controlled correlation between GDGT-2/GDGT-3 and TEX 86 . We then used Gaussian mixture models to statistically characterize these diagnostic patterns of modern AOA ecology from paleo-GDGT records to infer the evolution of marine AOA from the Mid-Mesozoic to the present. Long-term GDGT-2/GDGT-3 trends suggest a suppression of today’s deep water marine AOA during the Mesozoic–early Cenozoic greenhouse climates. Our analysis provides invaluable insights into the evolutionary timeline and the expansion of AOA niches associated with major oceanographic and climate changes.
more »
« less
- Award ID(s):
- 1843285
- PAR ID:
- 10435284
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 31
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Microorganisms regulate the composition of their membranes in response to environmental cues. Many Archaea maintain the fluidity and permeability of their membranes by adjusting the number of cyclic moieties within the cores of their glycerol dibiphytanyl glycerol tetraether (GDGT) lipids. Cyclized GDGTs increase membrane packing and stability, which has been shown to help cells survive shifts in temperature and pH. However, the extent of this cyclization also varies with growth phase and electron acceptor or donor limitation. These observations indicate a relationship between energy metabolism and membrane composition. Here we show that the average degree of GDGT cyclization increases with doubling time in continuous cultures of the thermoacidophileSulfolobus acidocaldarius(DSM 639). This is consistent with the behavior of a mesoneutrophile,Nitrosopumilus maritimusSCM1. Together, these results demonstrate that archaeal GDGT distributions can shift in response to electron donor flux and energy availability, independent of pH or temperature. Paleoenvironmental reconstructions based on GDGTs thus capture the energy available to microbes, which encompasses fluctuations in temperature and pH, as well as electron donor and acceptor availability. The ability of Archaea to adjust membrane composition and packing may be an important strategy that enables survival during episodes of energy stress.more » « less
-
Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications—a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea inThermococcus kodakarensisresults in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid–based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in twoArchaeoglobusspecies and the production of GMGTs with up to six rings inVulcanisaeta distributa.The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.more » « less
-
Abstract The TEX86proxy, based on the distribution of isoprenoid glycerol dialkyl glycerol tetraethers (iGDGTs) from planktonic Thaumarchaeota, is widely used to reconstruct sea surface temperature (SST). Recent observations of species‐specific and regionally dependent TEX86‐SST relationships in cultures and the modern ocean raise the question of whether nonthermal factors may have impacted TEX86paleorecords. Here we evaluate the effects of ecological changes on TEX86using one Pliocene and two Pleistocene sapropels from the Mediterranean Sea. We find that TEX86‐derived SSTs deviate from‐derived SSTs before, during, and after each sapropel event.‐derived SSTs vary by less than 6 °C, while TEX86‐derived SSTs vary by up to 15 °C within a single record. Compound‐specific carbon isotope compositions indicate minimal confounding influence on TEX86from exogenous sources. Some of the variation can be accounted for by changes in nitrogen cycling intensity affecting thaumarchaeal iGDGT biosynthesis, as demonstrated by an inverse relationship between TEX86and δ15NTN. TEX86‐derived SSTs also consistently show warm anomalies in the Pleistocene, while the Pliocene samples exhibit both warmer and cooler relative offsets. These anomalies result from systematic differences between Plio‐Pleistocene iGDGT distributions and both modern Mediterranean and modern, globally distributed core top samples. Through characteristic GDGT distributions, we suggest the existence of three distinct endemic populations of Thaumarchaeota in the Pliocene, Pleistocene, and modern Mediterranean Sea, respectively. Importantly, these communities prevailed during both sapropel and oligotrophic conditions. Our results demonstrate that ecological and community‐specific effects must be considered when applying the TEX86proxy to paleorecords.more » « less
An official website of the United States government

