Teachers use interpersonal classroom skills to support their students’ learning in the classroom, but homework is done in isolation without the affordances of classroom interactions. Here we investigate how a homework tool could empower teachers to utilize their interpersonal classroom skills and provide new ways to support students outside of the classroom. Through three phases of interviews and co-design, we co-designed software for teachers to create their own robot-assisted homework activities. We found that teachers' existing expertise initially led to wrong assumptions about the tool but after viewing an exemplifying stimulus they shifted their mental model of the tool and of homework in general. These findings can help understand (1) how pedagogical expertise may hinder utilization of new tools, and (2) how a catalyst may shift existing perceptions and facilitate the use of new paradigms to support student learning.
more »
« less
PATHWiSE: An Authoring Tool to Support Teachers to Create Robot-Supported Social Learning Experiences During Homework
Educational technologies can provide students with adaptive feedback and guidance, but these systems lack personal interactions that make social and cultural connections to the student's own classroom and prior experiences. Social or companion robots have a high capacity for these types of interactions, but typically require advanced levels of expertise to program. In this study, we examined teachers use of an authoring tool to enable them to leverage their classroom-based expertise to design robot-assisted homework assignments, and explore how seeing a robot enact their designs influences their work. We found that the tool enabled the teachers to create novel social interactions for homework activities that were similar to their classroom interaction patterns. These interaction designs evolved over time and were shaped by the teacher's emerging mental model of the social robot, their concept of the students' perspective of these interactions, and a shift towards informal classroom-like interaction paradigms, thus transforming their view of what they can achieve with homework. We discuss how these findings demonstrate how the context of the activity can influence initial mental models of social activities and suggest practical guidance on designing authoring tools to best facilitate the creation of computer or robot supported social activities, such as homework.
more »
« less
- Award ID(s):
- 2202802
- PAR ID:
- 10435457
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 7
- Issue:
- CSCW1
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 23
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Social robots can enhance deeper learning through social processes by providing companionship during typically isolated learning activities. Yet, there is limited exploration into the use of authoring tools for teachers to create and customize social robot-assisted lessons. To address this need, we present PATHWiSE, an authoring tool that utilizes teacher-in-the-loop AI-assisted verbal and non-verbal robot interaction design to customize RAL lessons to the needs and strengths of individual students and classrooms. We demonstrate the operation, AI-assist functions, and practical applications of the PATHWiSE UI. Our work underscores the need for developing tools for computing novices utilizing AI and RAL technologiesmore » « less
-
While teachers are consistently asked to investigate new forms of technology, the use of computer-based games provides additional, unique issues. This research describes the changes in 12 elementary teachers' perceptions of games in the classroom after participating in an early algebra game-based intervention. Teachers implemented two computer-based games and one interactive tool as part of their daily mathematics lesson. They were also asked to guide their students through specific supplemental activities for out-of-game learning, which directly related to the content in the games. Surveys, classroom observations, self-reflection logs, and interviews documented teacher-student interaction during Math Snacks games. Findings reflect how the intervention changed teachers' views of games; their orientation to using inquiry in the classroom; their facilitation of technology; and their perception of including students with different abilities in gameplay. Participating teachers saw games as a tool to let students explore and introduce a topic with minimal initial guidance. Some teachers also noted the value of computer-based games in supporting low-performing students' integration and participation with the rest of the class. Teachers reported that students' collaboration and discussion skills were the primary competencies noticed while students were playing. Most of the teachers noted that their role as facilitators is essential n in the students' learning.more » « less
-
Objectives. Physical computing systems are increasingly being integrated into secondary school science and STEM instruction, yet little is known about how teachers, especially those with little background and experience in computing, help students during the inevitable debugging moments that arise. In this article, we describe a framework, comprising two dimensions, for characterizing how teachers support students as they debug a physical computing system called the Data Sensor Hub (DASH). The DASH enables students to program sensors to measure, analyze, and visualize data as they engage in science inquiry activities. Participants. Five secondary school teachers implemented an inquiry-oriented instructional unit designed to introduce students to working with the DASH as a tool for scientific inquiry. Study Method. Findings drew on video analysis of the teachers’ classroom implementations of the unit. A review of the data corpus led to the selection of 23 moments where the teachers supported an individual or small groups of students engaged in debugging. These moments were analyzed using a grounded perspective based on Interaction Analysis to characterize the teachers’ varied interactional approaches. Findings. Our analysis revealed how teachers’ moves during debugging moments fell along two dimensions. The first dimension characterizes teachers’ positioning during the debugging interactions, ranging from a positioning for teacher understanding to a positioning for student understanding of the bug. The second dimension characterizes the inquiry orientation of the teachers’ questions and guidance, ranging from focusing on the debugging process to focusing on the product—or fixing the bug. Further, teachers’ moves often fell along different points on these dimensions given nuances in the instructional context. Conclusions. The framework offers a first step toward characterizing teachers’ debugging pedagogy as they support students during debugging moments. It also calls attention to how teachers do not necessarily need to be programming experts to effectively help students learn independent and generalizable debugging strategies. Further, it illustrates the variety of expertise that teachers can bring to debugging moments to support students learning to debug. Finally, the framework provides implications for the design of professional learning and supports for teachers as they increasingly are asked to support students in computing—and debugging—activities across a range of disciplines.more » « less
-
We aim to design robotic educational support systems that can promote socially and intellectually meaningful learning experiences for students while they complete school work outside of class. To pursue this goal, we conducted participatory design studies with 10 children (aged 10–12) to explore their design needs for robot assisted homework. We investigated children’s current ways of doing homework, the type of support they receive while doing homework, and co-designed the speech and expressiveness of a homework companion robot. Children and parents attending our design sessions explained that an emotionally expressive social robot as a homework aid can support students’ motivation and engagement, as well as their affective state. Children primarily perceived the robot as a dedicated assistant at home, capable of forming meaningful friendships, or a shared classroom learning resource. We present key design recommendations to support students’ homework experiences with a learning companion robot.more » « less
An official website of the United States government

