skip to main content


This content will become publicly available on July 1, 2024

Title: Kerveros: Efficient and Scalable Cloud Admission Control
The infinite capacity of cloud computing is an illusion: in reality, cloud providers cannot always have enough capacity of the right type, in the right place, at the right time to meet all demand. Consequently, cloud providers need to implement admission-control policies to ensure accepted capacity requests experience high availability. However, admission control in the public cloud is hard due to dynamic changes in both supply and demand: hardware might become unavailable, and actual VM consumption could vary for a variety of reasons including tenant scale-outs and fulfillment of VM reservations made by customers ahead of time. In this paper, we design and implement Kerveros, a flexible admission-control system that has three desired properties: i) high computational scalability to handle a large inventory, ii) accurate capacity provisioning for high VM availability, and iii) good packing efficiency to optimize resource usage. To achieve this, Kerveros uses novel bookkeeping techniques to quickly estimate the capacity available for incoming VM requests. Our system has been deployed in Microsoft Azure. Results from both simulations and production confirm that Kerveros achieves more than four nines of availability while sustaining request processing latencies of a few milliseconds.  more » « less
Award ID(s):
1909004
NSF-PAR ID:
10435555
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
17th USENIX Symposium on Operating Systems Design and Implementation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transient computing has become popular in public cloud environments for running delay-insensitive batch and data processing applications at low cost. Since transient cloud servers can be revoked at any time by the cloud provider, they are considered unsuitable for running interactive application such as web services. In this paper, we present VM deflation as an alternative mechanism to server preemption for reclaiming resources from transient cloud servers under resource pressure. Using real traces from top-tier cloud providers, we show the feasibility of using VM deflation as a resource reclamation mechanism for interactive applications in public clouds. We show how current hypervisor mechanisms can be used to implement VM deflation and present cluster deflation policies for resource management of transient and on-demand cloud VMs. Experimental evaluation of our deflation system on a Linux cluster shows that microservice-based applications can be deflated by up to 50% with negligible performance overhead. Our cluster-level deflation policies allow overcommitment levels as high as 50%, with less than a 1% decrease in application throughput, and can enable cloud platforms to increase revenue by 30% 
    more » « less
  2. We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule it. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service. We study this problem in an asymptotic regime where the number of servers and jobs’ arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs’ rewards and resources, at least [Formula: see text] of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. 
    more » « less
  3. Several recent studies have investigated the virtual machine (VM) provisioning problem for requests with time constraints (deadlines) in cloud systems. These studies typically assumed that a request is associated with a single execution time when running on VMs with a given resource demand. In this paper, we consider modern applications that are normally implemented with generic frameworks that allow them to execute with various numbers of threads on VMs with different resource demands. For such applications, it is possible for the users to specify multiple execution options (MEOs) for a request where each execution option is represented by a certain number of VMs with some resources to run the application and its corresponding execution time. We investigate the problem of virtual machine provisioning for such time-sensitive requests with MEOs in resource-constrained clouds. By incorporating the MEOs of requests, we propose several novel and flexible VM provisioning schemes that carefully balance resource usage efficiency, input workloads and request deadlines with the objective of achieving higher resource utilization and system benefits. We evaluated the proposed MEO-aware schemes on various workloads with both benchmark requests and synthetic requests. The results show that our MEO-aware algorithms outperform the state-of-the-art schemes that consider only a single execution option of requests by serving up to 38% more requests and achieving up to 27% more benefits. 
    more » « less
  4. Several recent studies have investigated the virtual machine (VM) provisioning problem for requests with time constraints (deadlines) in cloud systems. These studies typically assumed that a request is associated with a single execution time when running on VMs with a given resource demand. In this paper, we consider modern applications that are normally implemented with generic frameworks that allow them to execute with various numbers of threads on VMs with different resource demands. For such applications, it is possible for the users to specify multiple execution options (MEOs) for a request where each execution option is represented by a certain number of VMs with some resources to run the application and its corresponding execution time. We investigate the problem of virtual machine provisioning for such time-sensitive requests with MEOs in resource-constrained clouds. By incorporating the MEOs of requests, we propose several novel and flexible VM provisioning schemes that carefully balance resource usage efficiency, input workloads and request deadlines with the objective of achieving higher resource utilization and system benefits. We evaluated the proposed MEO-aware schemes on various workloads with both benchmark requests and synthetic requests. The results show that our MEO-aware algorithms outperform the state-of-the-art schemes that consider only a single execution option of requests by serving up to 38% more requests and achieving up to 27% more benefits. 
    more » « less
  5. Cloud platforms offer the same VMs under many purchasing options that specify different costs and time commitments, such as on-demand, reserved, sustained-use, scheduled reserve, transient, and spot block. In general, the stronger the commitment, i.e., longer and less flexible, the lower the price. However, longer and less flexible time commitments can increase cloud costs for users if future workloads cannot utilize the VMs they committed to buying. Large cloud customers often find it challenging to choose the right mix of purchasing options to reduce their long-term costs, while retaining the ability to adjust capacity up and down in response to workload variations.To address the problem, we design policies to optimize long-term cloud costs by selecting a mix of VM purchasing options based on short- and long-term expectations of workload utilization. We consider a batch trace spanning 4 years from a large shared cluster for a major state University system that includes 14k cores and 60 million job submissions, and evaluate how these jobs could be judiciously executed using cloud servers using our approach. Our results show that our policies incur a cost within 41% of an optimistic optimal offline approach, and 50% less than solely using on-demand VMs. 
    more » « less