skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Kerveros: Efficient and Scalable Cloud Admission Control
The infinite capacity of cloud computing is an illusion: in reality, cloud providers cannot always have enough capacity of the right type, in the right place, at the right time to meet all demand. Consequently, cloud providers need to implement admission-control policies to ensure accepted capacity requests experience high availability. However, admission control in the public cloud is hard due to dynamic changes in both supply and demand: hardware might become unavailable, and actual VM consumption could vary for a variety of reasons including tenant scale-outs and fulfillment of VM reservations made by customers ahead of time. In this paper, we design and implement Kerveros, a flexible admission-control system that has three desired properties: i) high computational scalability to handle a large inventory, ii) accurate capacity provisioning for high VM availability, and iii) good packing efficiency to optimize resource usage. To achieve this, Kerveros uses novel bookkeeping techniques to quickly estimate the capacity available for incoming VM requests. Our system has been deployed in Microsoft Azure. Results from both simulations and production confirm that Kerveros achieves more than four nines of availability while sustaining request processing latencies of a few milliseconds.  more » « less
Award ID(s):
1909004
PAR ID:
10435555
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
17th USENIX Symposium on Operating Systems Design and Implementation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transient computing has become popular in public cloud environments for running delay-insensitive batch and data processing applications at low cost. Since transient cloud servers can be revoked at any time by the cloud provider, they are considered unsuitable for running interactive application such as web services. In this paper, we present VM deflation as an alternative mechanism to server preemption for reclaiming resources from transient cloud servers under resource pressure. Using real traces from top-tier cloud providers, we show the feasibility of using VM deflation as a resource reclamation mechanism for interactive applications in public clouds. We show how current hypervisor mechanisms can be used to implement VM deflation and present cluster deflation policies for resource management of transient and on-demand cloud VMs. Experimental evaluation of our deflation system on a Linux cluster shows that microservice-based applications can be deflated by up to 50% with negligible performance overhead. Our cluster-level deflation policies allow overcommitment levels as high as 50%, with less than a 1% decrease in application throughput, and can enable cloud platforms to increase revenue by 30% 
    more » « less
  2. We consider a distributed server system consisting of a large number of servers, each with limited capacity on multiple resources (CPU, memory, etc.). Jobs with different rewards arrive over time and require certain amounts of resources for the duration of their service. When a job arrives, the system must decide whether to admit it or reject it, and if admitted, in which server to schedule it. The objective is to maximize the expected total reward received by the system. This problem is motivated by control of cloud computing clusters, in which jobs are requests for virtual machines (VMs) or containers that reserve resources for various services, and rewards represent service priority of requests or price paid per time unit of service. We study this problem in an asymptotic regime where the number of servers and jobs’ arrival rates scale by a factor L, as L becomes large. We propose a resource reservation policy that asymptotically achieves at least 1/2, and under certain monotone property on jobs’ rewards and resources, at least [Formula: see text] of the optimal expected reward. The policy automatically scales the number of VM slots for each job type as the demand changes and decides in which servers the slots should be created in advance, without the knowledge of traffic rates. 
    more » « less
  3. Several recent studies have investigated the virtual machine (VM) provisioning problem for requests with time constraints (deadlines) in cloud systems. These studies typically assumed that a request is associated with a single execution time when running on VMs with a given resource demand. In this paper, we consider modern applications that are normally implemented with generic frameworks that allow them to execute with various numbers of threads on VMs with different resource demands. For such applications, it is possible for the users to specify multiple execution options (MEOs) for a request where each execution option is represented by a certain number of VMs with some resources to run the application and its corresponding execution time. We investigate the problem of virtual machine provisioning for such time-sensitive requests with MEOs in resource-constrained clouds. By incorporating the MEOs of requests, we propose several novel and flexible VM provisioning schemes that carefully balance resource usage efficiency, input workloads and request deadlines with the objective of achieving higher resource utilization and system benefits. We evaluated the proposed MEO-aware schemes on various workloads with both benchmark requests and synthetic requests. The results show that our MEO-aware algorithms outperform the state-of-the-art schemes that consider only a single execution option of requests by serving up to 38% more requests and achieving up to 27% more benefits. 
    more » « less
  4. Several recent studies have investigated the virtual machine (VM) provisioning problem for requests with time constraints (deadlines) in cloud systems. These studies typically assumed that a request is associated with a single execution time when running on VMs with a given resource demand. In this paper, we consider modern applications that are normally implemented with generic frameworks that allow them to execute with various numbers of threads on VMs with different resource demands. For such applications, it is possible for the users to specify multiple execution options (MEOs) for a request where each execution option is represented by a certain number of VMs with some resources to run the application and its corresponding execution time. We investigate the problem of virtual machine provisioning for such time-sensitive requests with MEOs in resource-constrained clouds. By incorporating the MEOs of requests, we propose several novel and flexible VM provisioning schemes that carefully balance resource usage efficiency, input workloads and request deadlines with the objective of achieving higher resource utilization and system benefits. We evaluated the proposed MEO-aware schemes on various workloads with both benchmark requests and synthetic requests. The results show that our MEO-aware algorithms outperform the state-of-the-art schemes that consider only a single execution option of requests by serving up to 38% more requests and achieving up to 27% more benefits. 
    more » « less
  5. Virtual machine (VM) replication is an effective technique in cloud data centers to achieve fault-tolerance, load-balance, and quick-responsiveness to user requests. In this paper we study a new fault-tolerant VM placement problem referred to as FT-VMP. Given that different VM has different fault-tolerance requirement (i.e., different VM requires different number of replica copies) and compatibility requirement (i.e., some VMs and their replicas cannot be placed into some physical machines (PMs) due to software or platform incompatibility), FT-VMP studies how to place VM replica copies inside cloud data centers in order to minimize the number of PMs storing VM replicas, under the constraints that i) for fault-tolerant purpose, replica copies of the same VM cannot be placed inside the same PM and ii) each PM has a limited amount of storage capacity. We first prove that FT-VMP is NP-hard. We then design an integer linear programming (ILP)-based algorithm to solve it optimally. As ILP takes time to compute thus is not suitable for large scale cloud data centers, we design a suite of efficient and scalable heuristic fault-tolerant VM placement algorithms. We show that a) ILP-based algorithm outperforms the state-of-the-art VM replica placement in a wide range of network dynamics and b) that all our fault-tolerant VM placement algorithms are able to turn off significant number of PMs to save energy in cloud data centers. In particular, we show that our algorithms can consolidate (i.e., turn off) around 100 PMs in a small data center of 256 PMs and 700 PMs in a large data center of 1028PMs. 
    more » « less