skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decision Times Reveal Private Information in Strategic Settings: Evidence from Bargaining Experiments
Abstract People respond quickly when they have a clear preference and slowly when they are close to indifference. The question is whether others exploit this tendency to infer private information. In two-stage bargaining experiments, we observe that the speed with which buyers reject sellers’ offers decreases with the size of the foregone surplus. This should allow sellers to infer buyers’ values from response times (RT), creating an incentive for buyers to manipulate their RT. We experimentally identify distinct conditions under which subjects do, and do not, exhibit such strategic behaviour. These results provide the first insight into the possible use of RT as a strategic variable.  more » « less
Award ID(s):
2148982
PAR ID:
10435692
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Economic Journal
ISSN:
0013-0133
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A standard assumption in game theory is that decision-makers have preplanned strategies telling them what actions to take for every contingency. In contrast, nonstrategic decisions often involve an on-the-spot comparison process, with longer response times (RT) for choices between more similarly appealing options. If strategic decisions also exhibit these patterns, then RT might betray private information and alter game theory predictions. Here, we examined bargaining behavior to determine whether RT reveals private information in strategic settings. Using preexisting and experimental data from eBay, we show that both buyers and sellers take hours longer to accept bad offers and to reject good offers. We find nearly identical patterns in the two datasets, indicating a causal effect of offer size on RT. However, this relationship is half as strong for rejections as for acceptances, reducing the amount of useful private information revealed by the sellers. Counter to our predictions, buyers are discouraged by slow rejections—they are less likely to counteroffer to slow sellers. We also show that a drift-diffusion model (DDM), traditionally limited to decisions on the order of seconds, can account for decisions on the order of hours, sometimes days. The DDM reveals that more experienced sellers are less cautious and more inclined to accept offers. In summary, strategic decisions are inconsistent with preplanned strategies. This underscores the need for game theory to incorporate RT as a strategic variable and broadens the applicability of the DDM to slow decisions. 
    more » « less
  2. The growing adoption of data analytics platforms and machine learning-based solutions for decision-makers creates a significant demand for datasets, which explains the appearance of data markets. In a well-functioning data market, sellers share data in exchange for money, and buyers pay for datasets that help them solve problems. The market raises sufficient money to compensate sellers and incentivize them to keep sharing datasets. This low-friction matching of sellers and buyers distributes the value of data among participants. But designing online data markets is challenging because they must account for the strategic behavior of participants. In this paper, we introduce techniques to protect data markets from strategic participants, even when the asset traded is data. We combine those techniques into a pricing algorithm specifically designed to trade data. The evaluation includes a user study and extensive simulations. Together, the evaluation demonstrates how participants strategize and the effectiveness of our techniques. 
    more » « less
  3. Many e-commerce platforms use buyers’ personal data to intermediate their transactions with sellers. How much value do such intermediaries derive from the data record of each single individual? We characterize this value and find that one of its key components is a novel externality between records, which arises when the intermediary pools some records to withhold the information they contain. Our analysis has several implications about compensating individuals for the use of their data, guiding companies’ investments in data acquisition, and more broadly studying the demand side of data markets. Our methods combine modern information design with classic duality theory and apply to a large class of principal-agent problems. 
    more » « less
  4. Personal information and other types of private data are valuable for both data owners and institutions interested in providing targeted and customized services that require analyzing such data. In this context, privacy is sometimes seen as a commodity: institutions (data buyers) pay individuals (or data sellers) in exchange for private data. In this study, we examine the problem of designing such data contracts, through which a buyer aims to minimize his payment to the sellers for a desired level of data quality, while the latter aim to obtain adequate compensation for giving up a certain amount of privacy. Specifically, we use the concept of differential privacy and examine a model of linear and nonlinear queries on private data. We show that conventional algorithms that introduce differential privacy via zero-mean noise fall short for the purpose of such transactions as they do not provide sufficient degree of freedom for the contract designer to negotiate between the competing interests of the buyer and the sellers. Instead, we propose a biased differentially private algorithm which allows us to customize the privacy-accuracy tradeoff for each individual. We use a contract design approach to find the optimal contracts when using this biased algorithm to provide privacy, and show that under this combination the buyer can achieve the same level of accuracy with a lower payment as compared to using the unbiased algorithms, while incurring lower privacy loss for the sellers. 
    more » « less
  5. In this work we propose a model where the value of a buyer for some product (like a slice of pizza) is a combination of their personal desire for the product (how hungry they are for pizza) and the quality of the product (how good the pizza is). Sellers in this setting have a two-dimensional optimization problem of determining both the quality level at which to make their product (how expensive ingredients to use) and the price at which to sell it. We analyze optimal seller strategies as well as analogs of Walrasian equilibria in this setting. A key question we are interested in is: to what extent will the price of a good be a reliable indicator of the good’s quality? One result we show is that indeed in this model, price will be a surprisingly robust signal for quality under optimal seller behavior. In particular, while the specific quality and price that a seller should choose will depend highly on the specific distribution of buyers, for optimal sellers, price and quality will be linearly related, independent of that distribution. We also show that for the case of multiple buyers and sellers, an analog of Walrasian equilibrium exists in this setting, and can be found via a natural tatonnement process. Finally, we analyze markets with a combination of “locals” (who know the quality of each good) and “tourists” (who do not) and analyze under what conditions the market will become a tourist trap, setting quality to zero while keeping prices high. 
    more » « less