skip to main content


This content will become publicly available on July 1, 2024

Title: Early Hard X-Rays from the Nearby Core-collapse Supernova SN 2023ixf
Abstract We present NuSTAR observations of the nearby SN 2023ixf in M101 ( d = 6.9 Mpc) that provide the earliest hard X-ray detection of a nonrelativistic stellar explosion to date at δ t ≈ 4 days and δ t ≈ 11 days. The spectra are well described by a hot thermal bremsstrahlung continuum with T > 25 keV shining through a thick neutral medium with a neutral hydrogen column that decreases with time (initial N Hint = 2.6 × 10 23 cm −2 ). A prominent neutral Fe K α emission line is clearly detected, similar to other strongly interacting supernovae (SNe) such as SN 2010jl. The rapidly decreasing intrinsic absorption with time suggests the presence of a dense but confined circumstellar medium (CSM). The absorbed broadband X-ray luminosity (0.3–79 keV) is L X ≈ 2.5 × 10 40 erg s −1 during both epochs, with the increase in overall X-ray flux related to the decrease in the absorbing column. Interpreting these observations in the context of thermal bremsstrahlung radiation originating from the interaction of the SN shock with a dense medium we infer large particle densities in excess of n CSM ≈ 4 × 10 8 cm −3 at r < 10 15 cm, corresponding to an enhanced progenitor mass-loss rate of M ̇ ≈ 3 × 10 − 4 M ⊙ yr −1 for an assumed wind velocity of v w = 50 km s −1 .  more » « less
Award ID(s):
2224255 2221789
NSF-PAR ID:
10435695
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
952
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the results from our 7 yr long broadband X-ray observing campaign of SN 2014C with Chandra and NuSTAR. These coordinated observations represent the first look at the evolution of a young extragalactic SN in the 0.3–80 keV energy range in the years after core collapse. We find that the spectroscopic metamorphosis of SN 2014C from an ordinary type Ib SN into an interacting SN with copious hydrogen emission is accompanied by luminous X-rays reaching L x ≈ 5.6 × 10 40 erg s −1 (0.3–100 keV) at ∼1000 days post-explosion and declining as L x ∝ t −1 afterwards. The broadband X-ray spectrum is of thermal origin and shows clear evidence for cooling after peak, with T ( t ) ≈ 20 keV ( t / t pk ) − 0.5 . Soft X-rays of sub-keV energy suffer from large photoelectric absorption originating from the local SN environment with NH int ( t ) ≈ 3 × 10 22 ( t / 400 days ) − 1.4 cm − 2 . We interpret these findings as the result of the interaction of the SN shock with a dense ( n ≈ 10 5 − 10 6 cm −3 ), H-rich disk-like circumstellar medium (CSM) with inner radius ∼2 × 10 16 cm and extending to ∼10 17 cm. Based on the declining NH int ( t ) and X-ray luminosity evolution, we infer a CSM mass of ∼(1.2 f –2.0 f ) M ⊙ , where f is the volume filling factor. We place SN 2014C in the context of 121 core-collapse SNe with evidence for strong shock interaction with a thick circumstellar medium. Finally, we highlight the challenges that the current mass-loss theories (including wave-driven mass loss, binary interaction, and line-driven winds) face when interpreting the wide dynamic ranges of CSM parameters inferred from observations. 
    more » « less
  2. Abstract We present deep Chandra X-ray observations of two nearby Type Ia supernovae, SN 2017cbv and SN 2020nlb, which reveal no X-ray emission down to a luminosity L X ≲ 5.3 × 10 37 and ≲ 5.4 × 10 37 erg s −1 (0.3–10 keV), respectively, at ∼16–18 days after the explosion. With these limits, we constrain the pre-explosion mass-loss rate of the progenitor system to be M ̇ < 7.2 × 10 −9 and < 9.7 × 10 −9 M ⊙ yr −1 for each (at a wind velocity v w = 100 km s −1 and a radius of R ≈ 10 16 cm), assuming any X-ray emission would originate from inverse Compton emission from optical photons upscattered by the supernova shock. If the supernova environment was a constant-density medium, we would find a number density limit of n CSM < 36 and < 65 cm −3 , respectively. These X-ray limits rule out all plausible symbiotic progenitor systems, as well as large swathes of parameter space associated with the single degenerate scenario, such as mass loss at the outer Lagrange point and accretion winds. We also present late-time optical spectroscopy of SN 2020nlb, and set strong limits on any swept up hydrogen ( L H α < 2.7 × 10 37 erg s −1 ) and helium ( L He, λ 6678 < 2.7 × 10 37 erg s −1 ) from a nondegenerate companion, corresponding to M H ≲ 0.7–2 × 10 −3 M ⊙ and M He ≲ 4 × 10 −3 M ⊙ . Radio observations of SN 2020nlb at 14.6 days after explosion also yield a non-detection, ruling out most plausible symbiotic progenitor systems. While we have doubled the sample of normal Type Ia supernovae with deep X-ray limits, more observations are needed to sample the full range of luminosities and subtypes of these explosions, and set statistical constraints on their circumbinary environments. 
    more » « less
  3. Abstract We present panchromatic observations and modeling of calcium-strong supernovae (SNe) 2021gno in the star-forming host-galaxy NGC 4165 and 2021inl in the outskirts of elliptical galaxy NGC 4923, both monitored through the Young Supernova Experiment transient survey. The light curves of both, SNe show two peaks, the former peak being derived from shock cooling emission (SCE) and/or shock interaction with circumstellar material (CSM). The primary peak in SN 2021gno is coincident with luminous, rapidly decaying X-ray emission ( L x = 5 × 10 41 erg s −1 ) detected by Swift-XRT at δ t = 1 day after explosion, this observation being the second-ever detection of X-rays from a calcium-strong transient. We interpret the X-ray emission in the context of shock interaction with CSM that extends to r < 3 × 10 14 cm. Based on X-ray modeling, we calculate a CSM mass M CSM = (0.3−1.6) × 10 −3 M ⊙ and density n = (1−4) × 10 10 cm −3 . Radio nondetections indicate a low-density environment at larger radii ( r > 10 16 cm) and mass-loss rate of M ̇ < 10 − 4 M ⊙ yr −1 . SCE modeling of both primary light-curve peaks indicates an extended-progenitor envelope mass M e = 0.02−0.05 M ⊙ and radius R e = 30−230 R ⊙ . The explosion properties suggest progenitor systems containing either a low-mass massive star or a white dwarf (WD), the former being unlikely given the lack of local star formation. Furthermore, the environments of both SNe are consistent with low-mass hybrid He/C/O WD + C/O WD mergers. 
    more » « less
  4. ABSTRACT

    We report on Chandra X-ray observations of ASASSN-18tb/SN 2018fhw, a low luminosity Type Ia supernova (SN) that showed a H line in its optical spectrum. No X-ray emission was detected at the location of the SN. Upper limits to the luminosity of up to 3 × 1039 erg s−1 are calculated, depending on the assumed spectral model, temperature, and column density. These are compared to Type Ia-CSM SNe, SN 2005gj, and SN 2002ic that have been observed with Chandra in the past. The upper limits are lower than the X-ray luminosity found for the Type Ia-CSM SN 2012ca, the only Type Ia SN to have been detected in X-rays. Consideration of various scenarios for the Hα line suggests that the density of the surrounding medium at the time of Hα line detection could have been as high as 108 cm−3, but must have decreased below 5 $\times \, 10^6$ cm−3 at the time of X-ray observation. Continual X-ray observations of SNe which show a H line in their spectrum are necessary in order to establish Type Ia SNe as an X-ray emitting class.

     
    more » « less
  5. Abstract We present multiwavelength observations of the Type II SN 2020pni. Classified at ∼1.3 days after explosion, the object showed narrow (FWHM intensity <250 km s −1 ) recombination lines of ionized helium, nitrogen, and carbon, as typically seen in flash-spectroscopy events. Using the non-LTE radiative transfer code CMFGEN to model our first high-resolution spectrum, we infer a progenitor mass-loss rate of M ̇ = ( 3.5 – 5.3 ) × 10 − 3 M ⊙ yr −1 (assuming a wind velocity of v w = 200 km s −1 ), estimated at a radius of R in = 2.5 × 10 14 cm. In addition, we find that the progenitor of SN 2020pni was enriched in helium and nitrogen (relative abundances in mass fractions of 0.30–0.40 and 8.2 × 10 −3 , respectively). Radio upper limits are also consistent with dense circumstellar material (CSM) and a mass-loss rate of M ̇ > 5 × 10 − 4 M ☉ yr − 1 . During the initial 4 days after first light, we also observe an increase in velocity of the hydrogen lines (from ∼250 to ∼1000 km s −1 ), suggesting complex CSM. The presence of dense and confined CSM, as well as its inhomogeneous structure, indicates a phase of enhanced mass loss of the progenitor of SN 2020pni during the last year before explosion. Finally, we compare SN 2020pni to a sample of other shock-photoionization events. We find no evidence of correlations among the physical parameters of the explosions and the characteristics of the CSM surrounding the progenitors of these events. This favors the idea that the mass loss experienced by massive stars during their final years could be governed by stochastic phenomena and that, at the same time, the physical mechanisms responsible for this mass loss must be common to a variety of different progenitors. 
    more » « less