skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modulation of transport properties via S/Br substitution: solvothermal synthesis, crystal structure, and transport properties of Bi 13 S 17 Br 3
The solvothermal synthetic exploration of the Bi–S–halogen phase space resulted in the synthesis of two bismuth sulfohalides with common structural motifs. Bi 13 S 18 I 2 was confirmed to have the previously reported composition and crystal structure. In contrast, the bromide analogue was shown to have a formula of neither Bi 19 S 27 Br 3 nor Bi 13 S 18 Br 2 , in contrast to the previous reports. The composition, refined from single crystal X-ray diffraction and confirmed by elemental analysis, high-resolution powder X-ray diffraction, and total scattering, is close to Bi 13 S 17 Br 3 due to the partial S/Br substitution in the framework. Bi 13 S 18 I 2 and Bi 13 S 17 Br 3 are n -type semiconductors with similar optical bandgaps of ∼0.9 eV but different charge and heat transport properties. Due to the framework S/Br disorder, Bi 13 S 17 Br 3 exhibits lower thermal and electrical conductivities than the iodine-containing analogue. The high Seebeck coefficients and ultralow thermal conductivities indicate that the reported bismuth sulfohalides are promising platforms to develop novel thermoelectric materials.  more » « less
Award ID(s):
2003783
PAR ID:
10435715
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Dalton Transactions
Volume:
51
Issue:
43
ISSN:
1477-9226
Page Range / eLocation ID:
16748 to 16756
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The synthesis, crystal structure determination, magnetic properties and bonding interaction analysis of a novel 3 d transition-metal complex, [CrBr 2 (NCCH 3 ) 4 ](Br 3 ), are reported. Single-crystal X-ray diffraction results show that [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) crystallizes in space group C 2/ m (No. 12) with a symmetric tribromide anion and the powder X-ray diffraction results show the high purity of the material specimen. X-ray photoelectron studies with a combination of magnetic measurements demonstrate that Cr adopts the 3+ oxidation state. Based on the Curie–Weiss analysis of magnetic susceptibility data, the Néel temperature is found to be around 2.2 K and the effective moment (μ eff ) of Cr 3+ in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) is ∼3.8 µ B , which agrees with the theoretical value for Cr 3+ . The direct current magnetic susceptibility of the molecule shows a broad maximum at ∼2.3 K, which is consistent with the theoretical Néel temperature. The maximum temperature, however, shows no clear frequency dependence. Combined with the observed upturn in heat capacity below 2.3 K and the corresponding field dependence, it is speculated that the low-temperature magnetic feature of a broad transition in [CrBr 2 (NCCH 3 ) 4 ](Br 3 ) could originate from a crossover from high spin to low spin for the split d orbital level low-lying states rather than a short-range ordering solely; this is also supported by the molecular orbital diagram obtained from theoretical calculations. 
    more » « less
  2. We report the molecular beam epitaxy of Bi1−xSbx thin films (0 ≤ x ≤ 1) on sapphire (0001) substrates using a thin (Bi,Sb)2Te3 buffer layer. The characterization of the films using reflection high energy diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy reveals the epitaxial growth of films of reasonable structural quality. This is further confirmed via x-ray diffraction pole figures that determine the epitaxial registry between the thin film and the substrate. We further investigate the microscopic structure of thin films via Raman spectroscopy, demonstrating how the vibrational modes vary as the composition changes and discussing the implications for the crystal structure. We also characterize the samples using electrical transport measurements. 
    more » « less
  3. null (Ed.)
    The unconventional clathrates, Cs 8 Zn 18 Sb 28 and Cs 8 Cd 18 Sb 28 , were synthesized and reinvestigated. These clathrates exhibit unique and extensive superstructural ordering of the clathrate-I structure that was not initially reported. Cs 8 Cd 18 Sb 28 orders in the Ia 3̄ d space group (no. 230) with 8 times larger volume of the unit cell in which most framework atoms segregate into distinct Cd and Sb sites. The structure of Cs 8 Zn 18 Sb 28 is much more complicated, with an 18-fold increase of unit cell volume accompanied by significant reduction of symmetry down to P 2 (no. 3) monoclinic space group. This structure was revealed by a combination of synchrotron X-ray diffraction and electron microscopy techniques. A full solid solution, Cs 8 Zn 18−x Cd x Sb 28 , was also synthesized and characterized. These compounds follow Vegard's law in regard to their primitive unit cell sizes and melting points. Variable temperature in situ synchrotron powder X-ray diffraction was used to study the formation and melting of Cs 8 Zn 18 Sb 28 . Due to the heavy elements comprising clathrate framework and the complex structural ordering, the synthesized clathrates exhibit ultralow thermal conductivities, all under 0.8 W m −1 K −1 at room temperature. Cs 8 Zn 9 Cd 9 Sb 28 and Cs 8 Zn 4.5 Cd 13.5 Sb 28 both have total thermal conductivities of 0.49 W m −1 K −1 at room temperature, among the lowest reported for any clathrate. Cs 8 Zn 18 Sb 28 has typical p-type semiconducting charge transport properties, while the remaining clathrates show unusual n–p transitions or sharp increases of thermopower at low temperatures. Estimations of the bandgaps as activation energy for resistivity dependences show an anomalous widening and then shrinking of the bandgap with increasing Cd-content. 
    more » « less
  4. Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl–Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl–Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials. 
    more » « less
  5. Recently, a zipper two-dimensional (2D) material Bi 2 O 2 Se belonging to the layered bismuth oxychalcogenide (Bi 2 O 2 X: X = S, Se, Te) family, has emerged as an alternate candidate to van der Waals 2D materials for high-performance electronic and optoelectronic applications. This hints towards exploring the other members of the Bi 2 O 2 X family for their true potential and bismuth oxysulfide (Bi 2 O 2 S) could be the next member for such applications. Here, we demonstrate for the first time, the scalable room-temperature chemical synthesis and near-infrared (NIR) photodetection of ultrathin Bi 2 O 2 S nanosheets. The thickness of the freestanding nanosheets was around 2–3 nm with a lateral dimension of ∼80–100 nm. A solution-processed NIR photodetector was fabricated from ultrathin Bi 2 O 2 S nanosheets. The photodetector showed high performance, under 785 nm laser illumination, with a photoresponsivity of 4 A W −1 , an external quantum efficiency of 630%, and a normalized photocurrent-to-dark-current ratio of 1.3 × 10 10 per watt with a fast response time of 100 ms. Taken together, the findings suggest that Bi 2 O 2 S nanosheets could be a promising alternative 2D material for next-generation large-area flexible electronic and optoelectronic devices. 
    more » « less