Transparency matters a lot to people who experience moderation on online platforms; much CSCW research has viewed offering explanations as one of the primary solutions to enhance moderation transparency. However, relatively little attention has been paid to unpacking what transparency entails in moderation design, especially for content creators. We interviewed 28 YouTubers to understand their moderation experiences and analyze the dimensions of moderation transparency. We identified four primary dimensions: participants desired the moderation system to present moderation decisions saliently, explain the decisions profoundly, afford communication with the users effectively, and offer repairment and learning opportunities. We discuss how these four dimensions are mutually constitutive and conditioned in the context of creator moderation, where the target of governance mechanisms extends beyond the content to creator careers. We then elaborate on how a dynamic, transparency perspective could value content creators' digital labor, how transparency design could support creators' learning, as well as implications for transparency design of other creator platforms.
more »
« less
"I'm not sure what difference is between their content and mine, other than the person itself": A Study of Fairness Perception of Content Moderation on YouTube
How social media platforms could fairly conduct content moderation is gaining attention from society at large. Researchers from HCI and CSCW have investigated whether certain factors could affect how users perceive moderation decisions as fair or unfair. However, little attention has been paid to unpacking or elaborating on the formation processes of users' perceived (un)fairness from their moderation experiences, especially users who monetize their content. By interviewing 21 for-profit YouTubers (i.e., video content creators), we found three primary ways through which participants assess moderation fairness, including equality across their peers, consistency across moderation decisions and policies, and their voice in algorithmic visibility decision-making processes. Building upon the findings, we discuss how our participants' fairness perceptions demonstrate a multi-dimensional notion of moderation fairness and how YouTube implements an algorithmic assemblage to moderate YouTubers. We derive translatable design considerations for a fairer moderation system on platforms affording creator monetization.
more »
« less
- Award ID(s):
- 2006854
- PAR ID:
- 10435773
- Date Published:
- Journal Name:
- Proceedings of the ACM on Human-Computer Interaction
- Volume:
- 6
- Issue:
- CSCW2
- ISSN:
- 2573-0142
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To manage user-generated harmful video content, YouTube relies on AI algorithms (e.g., machine learning) in content moderation and follows a retributive justice logic to punish convicted YouTubers through demonetization, a penalty that limits or deprives them of advertisements (ads), reducing their future ad income. Moderation research is burgeoning in CSCW, but relatively little attention has been paid to the socioeconomic implications of YouTube's algorithmic moderation. Drawing from the lens of algorithmic labor, we describe how algorithmic moderation shapes YouTubers' labor conditions through algorithmic opacity and precarity. YouTubers coped with such challenges from algorithmic moderation by sharing and applying practical knowledge they learned about moderation algorithms. By analyzing video content creation as algorithmic labor, we unpack the socioeconomic implications of algorithmic moderation and point to necessary post-punishment support as a form of restorative justice. Lastly, we put forward design considerations for algorithmic moderation systems.more » « less
-
Social media users may perceive moderation decisions by the platform differently, which can lead to frustration and dropout. This study investigates users’ perceived justice and fairness of online moderation decisions when they are exposed to various illegal versus legal scenarios, retributive versus restorative moderation strategies, and user-moderated versus commercially moderated platforms. We conduct an online experiment on 200 American social media users of Reddit and Twitter. Results show that retributive moderation delivers higher justice and fairness for commercially moderated than for user-moderated platforms in illegal violations; restorative moderation delivers higher fairness for legal violations than illegal ones. We discuss the opportunities for platform policymaking to improve moderation system design.more » « less
-
Queer users of Douyin, the Chinese version of TikTok, suspect that the platform removes and suppresses queer content, thus reducing queer visibility. In this study, we examined how Chinese queer users recognize and react to Douyin’s moderation of queer content by conducting interviews with 21 queer China-based Douyin content creators and viewers. Findings indicate that queer users actively explore and adapt to the platform’s underlying moderation logic. They employ creative content and posting strategies to reduce the likelihood of their expressions of queer topics and identities being removed or suppressed. Like Western platforms, Douyin’s moderation approaches are often ambiguous; but unlike Western platforms, queer users sometimes receive clarity on moderation reasons via direct communication with moderators. Participants suggested that Douyin’s repressive moderation practices are in!uenced by more than just platform policies and procedures – they also re!ect state-led homophobia and societal discipline. This study underscores the challenges Chinese queer communities face in maintaining online visibility and suggests that meaningful change in their experiences is unlikely without broader societal shifts towards queer acceptance.more » « less
-
Algorithmic systems help manage the governance of digital platforms featuring user-generated content, including how money is distributed to creators from the profits a platform earns from advertising on this content. However, creators producing content about disadvantaged populations have reported that these kinds of systems are biased, having associated their content with prohibited or unsafe content, leading to what creators believed were error-prone decisions to demonetize their videos. Motivated by these reports, we present the results of 20 interviews with YouTube creators and a content analysis of videos, tweets, and news about demonetization cases to understand YouTubers' perceptions of demonetization affecting videos featuring disadvantaged or vulnerable populations, as well as creator responses to demonetization, and what kinds of tools and infrastructure support they desired. We found creators had concerns about YouTube's algorithmic system stereotyping content featuring vulnerable demographics in harmful ways, for example by labeling it "unsafe'' for children or families -- creators believed these demonetization errors led to a range of economic, social, and personal harms. To provide more context to these findings, we analyzed and report on the technique a few creators used to audit YouTube's algorithms to learn what could cause the demonetization of videos featuring LGBTQ people, culture and/or social issues. In response to the varying beliefs about the causes and harms of demonetization errors, we found our interviewees wanted more reliable information and statistics about demonetization cases and errors, more control over their content and advertising, and better economic security.more » « less