Capillary electrophoresis coupled with sheath-flow laser-induced fluorescence (LIF) detection has been shown to offer outstanding sensitivity for chemical and biochemical analysis. However, a major drawback remains with the complexity of the optical configuration traditionally employed. Here we present a simplified confocal optics based on fiber optics and micro gradient-index (GRIN) lenses for modular optical design in capillary electrophoresis with laser-induced fluorescence. We demonstrate the use of the optical system with a sheath-flow cuvette as the laser-induced fluorescence detector for capillary electrophoresis. The system’s performance was established with concentration detection limits of and mass detection limits of 57 zeptomole for a standard sodium fluorescein sample.
more »
« less
Detection techniques for carbohydrates in capillary electrophoresis – a comparative study
Abstract Capillary electrophoresis methods for the separation of carbohydrates with four different detection techniques, namely direct UV, indirect UV, capacitively coupled conductivity, and laser-induced fluorescence detection, were tested and their performance was evaluated and compared in terms of linearity, limits of detection and quantitation, repeatability, recovery, analysis time, and sample treatment. The test set of analytes comprised sucrose, glucose, and fructose. The effect of using lactose as an internal standard on the individual methods was investigated, too. The results showed that laser-induced fluorescence detection is a technique of choice for applications requiring the detection of very low amounts of reducing carbohydrates. Contactless conductivity detection is favorable when detection sensitivity is not a crucial parameter but fast and reliable analysis is required. When only a UV detector is available as a standard part of capillary electrophoresis instruments, direct UV detection can be used when analysis time is not a critical parameter. For fast analysis with UV detectors, indirect UV detection is the technique of choice. Finally, to verify the applicability of the tested methods, samples of cola beverage, honey, and orange juice were analyzed and the results obtained by all four methods were compared. Graphical abstract
more »
« less
- Award ID(s):
- 1658615
- PAR ID:
- 10435973
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Monatshefte für Chemie - Chemical Monthly
- Volume:
- 154
- Issue:
- 9
- ISSN:
- 0026-9247
- Page Range / eLocation ID:
- p. 967-975
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Neuropeptides are important signaling molecules responsible for a wide range of functions within the nervous and neuroendocrine system. However, they are difficult to study due to numerous challenges, most notably their large degree of variability and low abundance in vivo . As a result, effective separation methods with sensitive detection capabilities are necessary for profiling neuropeptides in tissue samples, particularly those of simplified model organisms such as crustaceans. In order to address these challenges, this study utilized a capillary electrophoresis (CE)-matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI) platform, building upon our previous design for improved neuropeptidomic coverage. The capillary was coated with polyethylenimine (PEI) to reduce peptide adsorption and reverse the electroosmotic flow, and large volume sample stacking (LVSS) was used to load and pre-concentrate 1 μL of sample. The method demonstrated good reproducibility, with lower than 5% relative standard deviation for standards, and a limit of detection of approximately 100 pM for an allatostatin III peptide standard. The method was tested on brain and sinus gland (SG) tissue extracts and enabled detection of over 200 neuropeptides per run. When comparing the number detected in brain extracts in a direct spot, 60-second fractions, and 30-second fractions, the continuous trace collection afforded by the CE-MALDI-MSI platform yielded the largest number of detected neuropeptides. The method was compared to conventional LC-ESI-MS, and though the number of neuropeptides detected by LC-ESI-MS was slightly larger, the two methods were highly complementary, indicating the potential for the CE-MALDI-MSI method to uncover previously undetected neuropeptides in the crustacean nervous system. These results indicate the potential of CE-MALDI-MSI for routine use in neuropeptide research.more » « less
-
Abstract Glyphosate is a globally applied herbicide yet it has been relatively undetectable in‐field samples outside of gold‐standard techniques. Its presumed nontoxicity toward humans has been contested by the International Agency for Research on Cancer, while it has been detected in farmers’ urine, surface waters and crop residues. Rapid, on‐site detection of glyphosate is hindered by lack of field‐deployable and easy‐to‐use sensors that circumvent sample transportation to limited laboratories that possess the equipment needed for detection. Herein, the flavoenzyme, glycine oxidase, immobilized on platinum‐decorated laser‐induced graphene (LIG) is used for selective detection of glyphosate as it is a substrate for GlyOx. The LIG platform provides a scaffold for enzyme attachment while maintaining the electronic and surface properties of graphene. The sensor exhibits a linear range of 10–260µm, detection limit of 3.03µm, and sensitivity of 0.991 nAµm−1. The sensor shows minimal interference from the commonly used herbicides and insecticides: atrazine, 2,4‐dichlorophenoxyacetic acid, dicamba, parathion‐methyl, paraoxon‐methyl, malathion, chlorpyrifos, thiamethoxam, clothianidin, and imidacloprid. Sensor function is further tested in complex river water and crop residue fluids, which validate this platform as a scalable, direct‐write, and selective method of glyphosate detection for herbicide mapping and food analysis.more » « less
-
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recentmore » « less
-
Abstract This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. “Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications,” pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.more » « less
An official website of the United States government
