Abstract We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/ γ -ray outburst, a 287 ks observation (2022 November 27–30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3–10 keV), NuSTAR in hard X-rays (3–70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 – 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2–4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs.
more »
« less
Limits on X-Ray Polarization at the Core of Centaurus A as Observed with the Imaging X-Ray Polarimetry Explorer
Abstract We present measurements of the polarization of X-rays in the 2–8 keV band from the nucleus of the radio galaxy Centaurus A (Cen A), using a 100 ks observation from the Imaging X-ray Polarimetry Explorer (IXPE). Nearly simultaneous observations of Cen A were also taken with the Swift, NuSTAR, and INTEGRAL observatories. No statistically significant degree of polarization is detected with IXPE. These observations have a minimum detectable polarization at 99% confidence (MDP 99 ) of 6.5% using a weighted, spectral model-independent calculation in the 2–8 keV band. The polarization angle ψ is consequently unconstrained. Spectral fitting across three orders of magnitude in X-ray energy (0.3–400 keV) demonstrates that the SED of Cen A is well described by a simple power law with moderate intrinsic absorption ( N H ∼ 10 23 cm −2 ) and a Fe K α emission line, although a second unabsorbed power law is required to account for the observed spectrum at energies below 2 keV. This spectrum suggests that the reprocessing material responsible for this emission line is optically thin and distant from the central black hole. Our upper limits on the X-ray polarization are consistent with the predictions of Compton scattering, although the specific seed photon population responsible for the production of the X-rays cannot be identified. The low polarization degree, variability in the core emission, and the relative lack of variability in the Fe K α emission line support a picture where electrons are accelerated in a region of highly disordered magnetic fields surrounding the innermost jet.
more »
« less
- Award ID(s):
- 2108622
- PAR ID:
- 10436035
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 935
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 116
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We report spectro-polarimetric results of an observational campaign of the bright neutron star low-mass X-ray binary Cyg X-2 simultaneously observed by IXPE, NICER, and INTEGRAL. Consistently with previous results, the broad-band spectrum is characterized by a lower-energy component, attributed to the accretion disc with kTin ≈ 1 keV, plus unsaturated Comptonization in thermal plasma with temperature kTe = 3 keV and optical depth τ ≈ 4, assuming a slab geometry. We measure the polarization degree in the 2–8 keV band P = 1.8 ± 0.3 per cent and polarization angle ϕ = 140° ± 4°, consistent with the previous X-ray polarimetric measurements by OSO-8 as well as with the direction of the radio jet which was earlier observed from the source. While polarization of the disc spectral component is poorly constrained with the IXPE data, the Comptonized emission has a polarization degree P = 4.0 ± 0.7 per cent and a polarization angle aligned with the radio jet. Our results strongly favour a spreading layer at the neutron star surface as the main source of the polarization signal. However, we cannot exclude a significant contribution from reflection off the accretion disc, as indicated by the presence of the iron fluorescence line.more » « less
-
Abstract We present measurements of the polarization of X-rays in the 2–8 keV band from the pulsar in the ultracompact low-mass X-ray binary 4U 1626–67 using data from the Imaging X-Ray Polarimetry Explorer (IXPE). The 7.66 s pulsations were clearly detected throughout the IXPE observations as well as in the NICER soft X-ray observations, which we used as the basis for our timing analysis and to constrain the spectral shape over the 0.4–10 keV energy band. Chandra HETGS high-resolution X-ray spectra were also obtained near the times of the IXPE observations for firm spectral modeling. We found an upper limit on the pulse-averaged linear polarization of <4% (at 95% confidence). Similarly, there was no significant detection of polarized flux in pulse phase intervals when subdividing the bandpass by energy. However, spectropolarimetric modeling over the full bandpass in pulse phase intervals provided a marginal detection of polarization of the power-law spectral component at the 4.8% ± 2.3% level (90% confidence). We discuss the implications concerning the accretion geometry onto the pulsar, favoring two-component models of the pulsed emission.more » « less
-
We report on a comprehensive analysis of simultaneous X-ray polarimetric and spectral data of the bright atoll source GX 9+9 with the Imaging X-ray Polarimetry Explorer (IXPE) and NuSTAR . The source is significantly polarized in the 4–8 keV band, with a degree of 2.2% ± 0.5% (uncertainty at the 68% confidence level). The NuSTAR broad-band spectrum clearly shows an iron line, and is well described by a model including thermal disc emission, a Comptonized component, and reflection. From a spectro-polarimetric fit, we obtain an upper limit to the polarization degree of the disc of 4% (at the 99% confidence level), while the contribution of Comptonized and reflected radiation cannot be conclusively separated. However, the polarization is consistent with resulting from a combination of Comptonization in a boundary or spreading layer, plus reflection off the disc, which significantly contributes in any realistic scenario.more » « less
-
ABSTRACT We report on the first observation of a radio-quiet active galactic nucleus (AGN) in polarized X-rays: the Seyfert 1.9 galaxy MCG-05-23-16. This source was pointed at with the Imaging X-ray Polarimetry Explorer (IXPE) starting on 2022 May 14 for a net observing time of 486 ks, simultaneously with XMM-Newton (58 ks) and NuSTAR (83 ks). A polarization degree Π smaller than 4.7 per cent (at the 99 per cent confidence level) is derived in the 2–8 keV energy range, where emission is dominated by the primary component ascribed to the hot corona. The broad-band spectrum, inferred from a simultaneous fit to the IXPE, NuSTAR, and XMM-Newton data, is well reproduced by a power law with photon index Γ = 1.85 ± 0.01 and a high-energy cutoff EC = 120 ± 15 keV. A comparison with Monte Carlo simulations shows that a lamp-post and a conical geometry of the corona are consistent with the observed upper limit, a slab geometry is allowed only if the inclination angle of the system is less than 50°.more » « less