skip to main content

Title: X-Ray Polarization Detection of Cassiopeia A with IXPE
Abstract We report on a ∼5 σ detection of polarized 3–6 keV X-ray emission from the supernova remnant Cassiopeia A (Cas A) with the Imaging X-ray Polarimetry Explorer (IXPE). The overall polarization degree of 1.8% ± 0.3% is detected by summing over a large region, assuming circular symmetry for the polarization vectors. The measurements imply an average polarization degree for the synchrotron component of ∼2.5%, and close to 5% for the X-ray synchrotron-dominated forward shock region. These numbers are based on an assessment of the thermal and nonthermal radiation contributions, for which we used a detailed spatial-spectral model based on Chandra X-ray data. A pixel-by-pixel search for polarization provides a few tentative detections from discrete regions at the ∼ 3 σ confidence level. Given the number of pixels, the significance is insufficient to claim a detection for individual pixels, but implies considerable turbulence on scales smaller than the angular resolution. Cas A’s X-ray continuum emission is dominated by synchrotron radiation from regions within ≲10 17 cm of the forward and reverse shocks. We find that (i) the measured polarization angle corresponds to a radially oriented magnetic field, similar to what has been inferred from radio observations; (ii) the X-ray polarization degree is lower than in the radio band (∼5%). Since shock compression should impose a tangential magnetic-field structure, the IXPE results imply that magnetic fields are reoriented within ∼10 17 cm of the shock. If the magnetic-field alignment is due to locally enhanced acceleration near quasi-parallel shocks, the preferred X-ray polarization angle suggests a size of 3 × 10 16 cm for cells with radial magnetic fields.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanisms such as shock acceleration, magnetic reconnection in a kink unstable jet, and extreme turbulence in the jet flow are all expected to produce a distinctive time variability pattern of the X-ray polarization properties of high synchrotron peak blazars (HSP). To determine whether the recently launched Imaging X-ray Polarimetry Explorer (IXPE) can follow the polarization variations induced by different particle acceleration mechanisms in blazar jets, we simulated observations of an HSP blazar variable in terms of the polarization degree and angle according to theoretical predictions. We used the Monte Carlo tool ixpeobssim to create realistic IXPE data products for each model and for three values of flux (i.e., 1, 5, and 10 × 10 −10 erg s −1 cm −2 ). We generated simulated light curves of the polarization degree and angle by time-slicing the simulated data into arbitrary short time bins. We used an χ 2 test to assess the performance of the observations in detecting the time variability of the polarization properties. In all cases, even when the light curves are diluted in an individual time bin, some degree of polarization is still measurable with IXPE. A series of ~10 ks long observations permits IXPE to follow the time variability of the polarization degree in the case of the shock acceleration model. In the case of the magnetic reconnection model, the nominal injected model provides the best fit of the simulated IXPE data for time bins of ~5–10 ks, depending on the tested flux level. For the TEMZ model, shorter time slices of ~0.5 ks are needed for obtaining a formally good fit of the simulated IXPE data with the injected model. On the other hand, we find that a fit with a constant model provides a χ 2 lower than the fit with the nominal injected model when using time slices of ~20 ks, ~60/70 ks, and ~5 ks for the case of the shock acceleration, magnetic reconnection, and TEMZ model, respectively. In conclusion, provided that the statistics of the observation allows for the slicing of the data in adequately short time bins, IXPE observations of an HSP blazar at a typical flux level can detect the time variability predicted by popular models for particle acceleration in jets. IXPE observations of HSP blazars are a useful tool for addressing the issue of particle acceleration in blazar jets. 
    more » « less
  2. Abstract Particle acceleration mechanisms in supermassive black hole jets, such as shock acceleration, magnetic reconnection, and turbulence, are expected to have observable signatures in the multiwavelength polarization properties of blazars. The recent launch of the Imaging X-Ray Polarimetry Explorer (IXPE) enables us, for the first time, to use polarization in the X-ray band (2–8 keV) to probe the properties of the jet synchrotron emission in high-synchrotron-peaked BL Lac objects (HSPs). We report the discovery of X-ray linear polarization (degree Π x = 15% ± 2% and electric vector position angle ψ x = 35° ± 4°) from the jet of the HSP Mrk 421 in an average X-ray flux state. At the same time, the degree of polarization at optical, infrared, and millimeter wavelengths was found to be lower by at least a factor of 3. During the IXPE pointing, the X-ray flux of the source increased by a factor of 2.2, while the polarization behavior was consistent with no variability. The higher level of Π x compared to longer wavelengths, and the absence of significant polarization variability, suggest a shock is the most likely X-ray emission site in the jet of Mrk 421 during the observation. The multiwavelength polarization properties are consistent with an energy-stratified electron population, where the particles emitting at longer wavelengths are located farther from the acceleration site, where they experience a more disordered magnetic field. 
    more » « less
  3. Abstract

    For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented.

    more » « less
  4. Abstract

    In so-called spider pulsars, the X-ray band is dominated by intrabinary shock (IBS) synchrotron emission. While the double-peaked X-ray light curves from these shocks have been well characterized in several spider systems (both black widows and redbacks), the polarization of this emission is yet to be studied. Motivated by the new polarization capability of the Imaging X-ray Polarization Explorer and the confirmation of highly ordered magnetic fields in pulsar wind nebulae, we model the IBS polarization by employing two potential magnetic field configurations: toroidal magnetic fields imposed by the preshock pulsar wind, and tangential shock-generated fields that follow the postshock flow. We find that if IBSs host ordered magnetic fields, the synchrotron X-rays from spider binaries can display a high degree of polarization (≳50%), while the variation in polarization angle provides a good probe of the binary geometry and the magnetic field structure. Our results encourage observational polarization studies of spider pulsars that can distinguish the proposed magnetic models and that constrain the unique properties of these systems better.

    more » « less
  5. Abstract The first X-ray pulsar, Cen X-3, was discovered 50 yr ago. Radiation from such objects is expected to be highly polarized due to birefringence of plasma and vacuum associated with propagation of photons in the presence of the strong magnetic field. Here we present results of the observations of Cen X-3 performed with the Imaging X-ray Polarimetry Explorer. The source exhibited significant flux variability and was observed in two states different by a factor of ∼20 in flux. In the low-luminosity state, no significant polarization was found in either pulse phase-averaged (with a 3 σ upper limit of 12%) or phase-resolved (the 3 σ upper limits are 20%–30%) data. In the bright state, the polarization degree of 5.8% ± 0.3% and polarization angle of 49.°6 ± 1.°5 with a significance of about 20 σ were measured from the spectropolarimetric analysis of the phase-averaged data. The phase-resolved analysis showed a significant anticorrelation between the flux and the polarization degree, as well as strong variations of the polarization angle. The fit with the rotating vector model indicates a position angle of the pulsar spin axis of about 49° and a magnetic obliquity of 17°. The detected relatively low polarization can be explained if the upper layers of the neutron star surface are overheated by the accreted matter and the conversion of the polarization modes occurs within the transition region between the upper hot layer and a cooler underlying atmosphere. A fraction of polarization signal can also be produced by reflection of radiation from the neutron star surface and the accretion curtain. 
    more » « less