skip to main content


Title: Distance Profiles of Optimal RNA Foldings
Predicting the secondary structure of RNA is an important problem in molecular biology, providing insights into the function of non-coding Rn As and with broad applications in understanding disease, the development of new drugs, among others. Combinatorial algorithms for predicting RNA foldings can generate an exponentially large number of equally optimal foldings with respect to a given optimization criterion, making it difficult to determine how well any single folding represents the entire space. We provide efficient new algorithms for providing insights into this large space of optimal RNA foldings and a research software tool, toRNAdo, that implements these algorithms.  more » « less
Award ID(s):
2231150
NSF-PAR ID:
10436135
Author(s) / Creator(s):
; ; ;
Editor(s):
Bansal, M
Date Published:
Journal Name:
Bioinformatics Research and Applications: 18th International Symposium, ISBRA 2022, Haifa, Israel, November 14–17, 2022, Proceedings
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Predicting the secondary structure of an ribonucleic acid (RNA) sequence is useful in many applications. Existing algorithms [based on dynamic programming] suffer from a major limitation: their runtimes scale cubically with the RNA length, and this slowness limits their use in genome-wide applications.

    Results

    We present a novel alternative O(n3)-time dynamic programming algorithm for RNA folding that is amenable to heuristics that make it run in O(n) time and O(n) space, while producing a high-quality approximation to the optimal solution. Inspired by incremental parsing for context-free grammars in computational linguistics, our alternative dynamic programming algorithm scans the sequence in a left-to-right (5′-to-3′) direction rather than in a bottom-up fashion, which allows us to employ the effective beam pruning heuristic. Our work, though inexact, is the first RNA folding algorithm to achieve linear runtime (and linear space) without imposing constraints on the output structure. Surprisingly, our approximate search results in even higher overall accuracy on a diverse database of sequences with known structures. More interestingly, it leads to significantly more accurate predictions on the longest sequence families in that database (16S and 23S Ribosomal RNAs), as well as improved accuracies for long-range base pairs (500+ nucleotides apart), both of which are well known to be challenging for the current models.

    Availability and implementation

    Our source code is available at https://github.com/LinearFold/LinearFold, and our webserver is at http://linearfold.org (sequence limit: 100 000nt).

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  2. null (Ed.)
    Abstract The ability to predict the efficacy of cancer treatments is a longstanding goal of precision medicine that requires improved understanding of molecular interactions with drugs and the discovery of biomarkers of drug response. Identifying genes whose expression influences drug sensitivity can help address both of these needs, elucidating the molecular pathways involved in drug efficacy and providing potential ways to predict new patients’ response to available therapies. In this study, we integrated cancer type, drug treatment, and survival data with RNA-seq gene expression data from The Cancer Genome Atlas to identify genes and gene sets whose expression levels in patient tumor biopsies are associated with drug-specific patient survival using a log-rank test comparing survival of patients with low vs. high expression for each gene. This analysis was successful in identifying thousands of such gene–drug relationships across 20 drugs in 14 cancers, several of which have been previously implicated in the respective drug’s efficacy. We then clustered significant genes based on their expression patterns across patients and defined gene sets that are more robust predictors of patient outcome, many of which were significantly enriched for target genes of one or more transcription factors, indicating several upstream regulatory mechanisms that may be involved in drug efficacy. We identified a large number of genes and gene sets that were potentially useful as transcript-level biomarkers for predicting drug-specific patient survival outcome. Our gene sets were robust predictors of drug-specific survival and our results included both novel and previously reported findings, suggesting that the drug-specific survival marker genes reported herein warrant further investigation for insights into drug mechanisms and for validation as biomarkers to aid cancer therapy decisions. 
    more » « less
  3. Abstract Background

    Advanced machine learning models have received wide attention in assisting medical decision making due to the greater accuracy they can achieve. However, their limited interpretability imposes barriers for practitioners to adopt them. Recent advancements in interpretable machine learning tools allow us to look inside the black box of advanced prediction methods to extract interpretable models while maintaining similar prediction accuracy, but few studies have investigated the specific hospital readmission prediction problem with this spirit.

    Methods

    Our goal is to develop a machine-learning (ML) algorithm that can predict 30- and 90- day hospital readmissions as accurately as black box algorithms while providing medically interpretable insights into readmission risk factors. Leveraging a state-of-art interpretable ML model, we use a two-step Extracted Regression Tree approach to achieve this goal. In the first step, we train a black box prediction algorithm. In the second step, we extract a regression tree from the output of the black box algorithm that allows direct interpretation of medically relevant risk factors. We use data from a large teaching hospital in Asia to learn the ML model and verify our two-step approach.

    Results

    The two-step method can obtain similar prediction performance as the best black box model, such as Neural Networks, measured by three metrics: accuracy, the Area Under the Curve (AUC) and the Area Under the Precision-Recall Curve (AUPRC), while maintaining interpretability. Further, to examine whether the prediction results match the known medical insights (i.e., the model is truly interpretable and produces reasonable results), we show that key readmission risk factors extracted by the two-step approach are consistent with those found in the medical literature.

    Conclusions

    The proposed two-step approach yields meaningful prediction results that are both accurate and interpretable. This study suggests a viable means to improve the trust of machine learning based models in clinical practice for predicting readmissions through the two-step approach.

     
    more » « less
  4. The HTTP adaptive streaming technique opened the door to cope with the fluctuating network conditions during the streaming process by dynamically adjusting the volume of the future chunks to be downloaded. The bitrate selection in this adjustment inevitably involves the task of predicting the future throughput of a video session, owing to which various heuristic solutions have been explored. The ultimate goal of the present work is to explore the theoretical upper bounds of the QoE that any ABR algorithm can possibly reach, therefore providing an essential step to benchmarking the performance evaluation of ABR algorithms. In our setting, the QoE is defined in terms of a linear combination of the average perceptual quality and the buffering ratio. The optimization problem is proven to be NP-hard when the perceptual quality is defined by chunk size and conditions are given under which the problem becomes polynomially solvable. Enriched by a global lower bound, a pseudo-polynomial time algorithm along the dynamic programming approach is presented. When the minimum buffering is given higher priority over higher perceptual quality, the problem is shown to be also NP-hard, and the above algorithm is simplified and enhanced by a sequence of lower bounds on the completion time of chunk downloading, which, according to our experiment, brings a 36.0% performance improvement in terms of computation time. To handle large amounts of data more efficiently, a polynomial-time algorithm is also introduced to approximate the optimal values when minimum buffering is prioritized. Besides its performance guarantee, this algorithm is shown to reach 99.938% close to the optimal results, while taking only 0.024% of the computation time compared to the exact algorithm in dynamic programming. 
    more » « less
  5. null (Ed.)
    Contemporary machine learning applications often involve classification tasks with many classes. Despite their extensive use, a precise understanding of the statistical properties and behavior of classification algorithms is still missing, especially in modern regimes where the number of classes is rather large. In this paper, we take a step in this direction by providing the first asymptotically precise analysis of linear multiclass classification. Our theoretical analysis allows us to precisely character- ize how the test error varies over different training algorithms, data distributions, problem dimensions as well as number of classes, inter/intra class correlations and class priors. Specifically, our analysis reveals that the classification accuracy is highly distribution-dependent with different algorithms achieving optimal per- formance for different data distributions and/or training/features sizes. Unlike linear regression/binary classification, the test error in multiclass classification relies on intricate functions of the trained model (e.g., correlation between some of the trained weights) whose asymptotic behavior is difficult to characterize. This challenge is already present in simple classifiers, such as those minimizing a square loss. Our novel theoretical techniques allow us to overcome some of these chal- lenges. The insights gained may pave the way for a precise understanding of other classification algorithms beyond those studied in this paper. 
    more » « less