skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Late Devonian actinopterygian suggests high lineage survivorship across the end-Devonian mass extinction
Award ID(s):
2219007 2219069
PAR ID:
10436137
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature Ecology & Evolution
Volume:
7
Issue:
1
ISSN:
2397-334X
Page Range / eLocation ID:
10 to 19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Little evidence of macrofossil charcoal, a wildfire proxy, is recorded from upper Lower to lowermost Upper Devonian rocks. Coals of this age are few, and petrographic data indicate low volumes (<10% mineral-matter free) of charcoal. This paucity of data forms the basis of the “charcoal gap,” which is used to suggest an extended interval of abnormally low atmospheric oxygen (pO2). We reassess the current evidence for this hiatus using Emsian−Eifelian charcoal from the Trout Valley and St. Froid Lake Formations, Maine (northeastern United States), and integrate the microscopic charcoal record of dispersed organic matter. We conclude there is ample evidence of fire in the Middle Devonian. This interval is not innately of low pO2. Rather, it is one in which under-interpretation of available data has led to a perceived paucity of charcoal. This reconciliation indicates the Phanerozoic record of wildfire was substantially uninterrupted. Hence, we propose that pO2 achieved levels >16% and remained at such levels from the Silurian through the floral and faunal colonization of land and, from our current estimates, stayed as such until the present. 
    more » « less
  2. Abstract Body size is an essential factor in an organism's survival, and when paired with paleoenvironmental proxies, size trends can provide insights into a lineage's evolutionary responses to changing environmental conditions. This study explores the diversity and body-volume trends of dacryoconarid tentaculitoids, globally abundant marine zooplankton, in the Devonian of the Appalachian Basin (eastern United States), spanning the late Givetian through the middle Frasnian punctata carbon isotope excursion. Using statistical approaches to model trends, we find evidence of a gradual, within-lineage reduction in styliolinid adult body sizes starting at the Givetian-Frasnian boundary. This reduction is followed by a significant decrease in both adult and initial chamber volumes during the punctata excursion. At the Givetian-Frasnian boundary, annulated forms (nowakiids) become rare and smooth forms (styliolinids) begin to dominate the assemblage. Using pre-existing geological and geochemical data sets, we consider environmental factors, including sea level, anoxia, nutrient availability, and temperature, as potential drivers of body-size reductions. Bottom-water anoxia most likely did not influence body-size trends of this pelagic group, but frequent water-column overturning in the Frasnian or other exchange between deep and shallow water may have affected taxonomic composition, favoring styliolinids. Sea-surface temperature correlates inversely with body size, suggesting that warming beginning in the early Frasnian may have contributed to gradual, long-term size reductions. Rising temperatures through the middle Frasnian may have led to the disappearance of dacryoconarids in the northern Appalachian Basin after the excursion. 
    more » « less
  3. Abstract Evidence of fire in the Middle Devonian remains globally scarce. Charcoalified mesofossils recovered from the Emsian–Eifelian Trout Valley and St. Froid Lake formations of Maine are direct evidence of wildfires proximal to the Acadian Orogen, formed as the Avalon terrane and the North American plate collided. These mesofossils include charred psilophytes, lycopsids, prototaxodioids, enigmatic taxa such as Spongiophyton, and coprolites. Here, fire combusted a senesced and partially decayed litter, and the intimately associated nematophytes, following a period of extended dryness. We envisage wildfires occurred during neap tide when exposure of the flora of this estuarine setting was prolonged. Herein we provide a reconstruction of this Middle Devonian landscape and its flora in which lightning generated by post-dry season storms ignited wildfires that propagated through an extensive psilophyte-dominated litter. 
    more » « less
  4. This study utilizes the magnetic susceptibility (MS) of sedimentary strata to correlate the Late Devonian Antrim Formation black shale and calcareous mudstone within the Michigan Basin as well as the Antrim with previously published MS profiles from contemporaneous, shale-dominated strata from the Illinois Basin. MS can be used as a proxy for changes in material composition, which is linked to paleoclimate-controlled sediment fluxes and depositional environments. In the Michigan Basin, MS profiles through the basin-margin State Chester Welch 18 and the more basinal Krocker 1-17 cores show that MS patterns correspond to lithostratigraphic units. For some of these units the MS patterns are similar among the cores, though not for all units. Preliminary interpretation is that MS patterns are a result of proximity to sediment source (Acadian Orogeny versus Transcontinental Arch) as well as intrabasinal early diagenetic processes (pyrite). Furthermore, the lithostratigraphic units in these cores may not be chronostratigraphically equivalent. This study also compares the Michigan Basin MS basinal profile (Krocker 1-17 core) with previously published data from the “Bullitt County Core” from Kentucky, in the southern Illinois Basin. Within a biostratigraphic framework, the Michigan and Illinois Basin cores appear to show similar MS patterns. This is possibly because sediment input to these two locations is primarily sourced from the Acadian Orogeny, and the depositional environment and therefore early diagenetic processes, are similar. Future work will combine mineralogical analysis with the MS profiles to decipher the source of magnetic susceptibility, currently hypothesized to be driven by ilmenite concentration. 
    more » « less