skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protein redox by a piezoelectric acousto-nanodevice
Protein redox is responsible for many crucial biological processes; thus, the ability to modulate the redox proteins through external stimuli presents a unique opportunity to tune the system. In this work, we present an acousto-nanodevice that is capable of oxidizing redox protein under ultrasonic irradiation via surface-engineered barium titanate (BTO) nanoparticles with a gold half-coating. Using cytochrome c as the model protein, we demonstrate nanodevice-mediated protein oxidation. BINased on our experimental observations, we reveal that the electron transfer occurs in one direction due to the alternating electrical polarization of BTO under ultrasound. Such unique unidirectional electron transfer is enabled by modulating the work function of the gold surface with respect to the redox center. The new class of ultrasonically powered nano-sized protein redox agents could be a modulator for biological processes with high selectivity and deeper treatment sites.  more » « less
Award ID(s):
2245090
PAR ID:
10436218
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanoscale
ISSN:
2040-3364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fluorinated 5-hydroxytryptophans (F n -5HOWs) were synthesized in gram scale quantities and incorporated into a β-hairpin peptide and the protein azurin. The redox-active F n -5HOWs exhibit unique radical spectroscopic signatures that expand the function of 5HOW as probes for biological electron transfer. 
    more » « less
  2. Abstract The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation–reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation–reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user‐contributed submissions with the intention of making it a valuable resource for researchers in this field. 
    more » « less
  3. null (Ed.)
    Because electron transfer reactions are fundamental to life processes, such as respiration, vision, and energy catabolism, it is critically important to understand the relationship between functional states of individual redox enzymes and the macroscopically observed phenotype, which results from averaging over all copies of the same enzyme. To address this problem, we have developed a new technology, based on a bifunctional nanoelectrochemical-nanophotonic architecture - the electrochemical zero mode waveguide (E-ZMW) - that can couple biological electron transfer reactions to luminescence, making it possible to observe single electron transfer events in redox enzymes. Here we describe E-ZMW architectures capable of supporting potential-controlled redox reactions with single copies of the oxidoreductase enzyme, glutathione reductase, GR, and extend these capabilities to electron transfer events where reactive oxygen species are synthesized within the  100 zL volume of the nanopore. 
    more » « less
  4. Redox reactions play a key role in various biological processes, including photosynthesis and respiration. Quantitative and predictive computational characterization of redox events is therefore highly desirable for enriching our knowledge on mechanistic features of biological redox-active macromolecules. Here, we present a computational protocol exploiting polarizable embedding hybrid quantum-classical approach and resulting in accurate estimates of redox potentials of biological macromolecules. A special attention is paid to fundamental aspects of the theoretical description such as the effects of environment polarization and of the long-range electrostatic interactions on the computed energetic parameters. Environment (protein and the solvent) polarization is shown to be crucial for accurate estimates of the redox potential: hybrid quantum-classical results with and without account for environment polarization differ by 1.4 V. Long-range electrostatic interactions are shown to contribute significantly to the computed redox potential value even at the distances far beyond the protein outer surface. The approach is tested on simulating reduction potential of cryptochrome 1 protein from Arabidopsis thaliana . The theoretical estimate (0.07 V) of the midpoint reduction potential is in good agreement with available experimental data (−0.15 V). 
    more » « less
  5. Abstract Redox provides unique opportunities for interconverting molecular/biological information into electronic signals. Here, the fabrication of a 3D‐printed multiwell device that can be interfaced into existing laboratory instruments (e.g., well‐plate readers and microscopes) to enable advanced redox‐based spectral and electrochemical capabilities is reported. In the first application, mediated probing is used as a soft sensing method for biomanufacturing: it is shown that electrochemical signal metrics can discern intact mAbs from partially reduced mAb variants (fragmentation), and that these near‐real‐time electrical measurements correlate to off‐line chemical analysis. In the second application,operandospectroelectrochemical measurements are used to characterize a redox‐active catechol‐based hydrogel film: it is shown that electron transfer into/from the film correlates to the molecular switching of the film's redox state with the film's absorbance increasing upon oxidation and the film's fluorescence increasing upon reduction. In the final example, a synthetic biofilm containing redox‐responsiveE. coliis electro‐assembled: it is shown that gene expression can be induced under reducing conditions (via reductive H2O2generation) or oxidative conditions (via oxidation of a phenolic redox‐signaling molecule). Overall, this work demonstrates that 3D printing allows the fabrication of bespoke electrochemical devices that can accelerate the understanding of redox‐based phenomena in biology and enable the detection/characterization redox activities in technology. 
    more » « less