skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral Gaps of the Laplacian on Differential Forms
In this short article, we explore some basic results associated to the Generalized Weyl criterion for the essential spectrum of the Laplacian on Riemannian manifolds. We use the language of Gromov-Hausdorff convergence to recall a spectral gap theorem. Finally, we make the necessary adjustments to extend our main results, and construct a class of complete noncompact manifolds with an arbitrarily large number of gaps in the spectrum of the Hodge Laplacian acting on differential forms.  more » « less
Award ID(s):
1908513
PAR ID:
10436386
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Contemprory Mathematics
Volume:
777
Page Range / eLocation ID:
127-135
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this short article, we explore some basic results associated to the Generalized Weyl criterion for the essential spectrum of the Laplacian on Riemannian manifolds. We use the language of Gromov-Hausdorff convergence to recall a spectral gap theorem. Finally, we make the necessary adjustments to extend our main results, and construct a class of complete noncompact manifolds with an arbitrarily large number of gaps in the spectrum of the Hodge Laplacian acting on differential forms. 
    more » « less
  2. In this paper, we generalize the spectrum relation in the paper "On the spectrum of the Laplacian, Math. Ann., 359(1-2):211--238, 2014, by Nelia Charalambous and Zhiqin Lu" to any Hermitian manifolds. We also prove that the closure of the Laplace operator on the moduli space of polarized Calabi-Yau manifolds is self-adjoint. 
    more » « less
  3. We answer in the affirmative a question of Sarnak’s from 2007, confirming that the Patterson–Sullivan base eigenfunction is the unique square-integrable eigenfunction of the hyperbolic Laplacian invariant under the group of symmetries of the Apollonian packing. Thus the latter has a maximal spectral gap. We prove further restrictions on the spectrum of the Laplacian on a wide class of manifolds coming from Kleinian sphere packings. 
    more » « less
  4. Abstract In this paper, we prove sharp decay estimates of nonnegative generalized subharmonic functions on graphs with positive Laplacian spectrum, which extends the result by Li and Wang (J. Differential Geom. 58 (2001) 501–534) on Riemannian manifolds. 
    more » « less
  5. The complex Green operator $$\mathcal{G}$$ on CR manifolds is the inverse of the Kohn-Laplacian $$\square_b$$ on the orthogonal complement of its kernel. In this note, we prove Schatten and Sobolev estimates for $$\mathcal{G}$$ on the unit sphere $$\mathbb{S}^{2n-1}\subset \mathbb{C}^n$$. We obtain these estimates by using the spectrum of $$\boxb$$ and the asymptotics of the eigenvalues of the usual Laplace-Beltrami operator. 
    more » « less