This content will become publicly available on July 25, 2024
- Award ID(s):
- 2003685
- NSF-PAR ID:
- 10436407
- Date Published:
- Journal Name:
- Inorganic Chemistry Frontiers
- Volume:
- 10
- Issue:
- 15
- ISSN:
- 2052-1553
- Page Range / eLocation ID:
- 4289 to 4312
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The urgent need to address the high-cost issue of proton-exchange membrane fuel cell (PEMFC) technologies, particularly for transportation applications, drives the development of simultaneously highly active and durable platinum group metal-free (PGM-free) catalysts and electrodes. The past decade has witnessed remarkable progress in exploring PGM-free cathode catalysts for the oxygen reduction reaction (ORR) to overcome sluggish kinetics and catalyst instability in acids. Among others, scientists have identified the newly emerging atomically dispersed transition metal (M: Fe, Co, or/and Mn) and nitrogen co-doped carbon (M–N–C) catalysts as the most promising alternative to PGM catalysts. Here, we provide a comprehensive review of significant breakthroughs, remaining challenges, and perspectives regarding the M–N–C catalysts in terms of catalyst activity, stability, and membrane electrode assembly (MEA) performance. A variety of novel synthetic strategies demonstrated effectiveness in improving intrinsic activity, increasing active site density, and attaining optimal porous structures of catalysts. Rationally designing and engineering the coordination environment of single metal MN x sites and their local structures are crucial for enhancing intrinsic activity. Increasing the site density relies on the innovative strategies of restricting the migration and agglomeration of single metal sites into metallic clusters. Relevant understandings provide the correlations among the nature of active sites, nanostructures, and catalytic activity of M–N–C catalysts at the atomic scale through a combination of experimentation and theory. Current knowledge of the transferring catalytic properties of M–N–C catalysts to MEA performance is limited. Rationally designing morphologic features of M–N–C catalysts play a vital role in boosting electrode performance through exposing more accessible active sites, realizing uniform ionomer distribution, and facilitating mass/proton transports. We outline future research directions concerning the comprehensive evaluation of M–N–C catalysts in MEAs. The most considerable challenge of current M–N–C catalysts is the unsatisfied stability and rapid performance degradation in MEAs. Therefore, we further discuss practical methods and strategies to mitigate catalyst and electrode degradation, which is fundamentally essential to make M–N–C catalysts viable in PEMFC technologies.more » « less
-
Nanozymes are a class of artificial enzymes that have dimensions in the nanometer range and can be composed of simple metal and metal oxide nanoparticles, metal nanoclusters, dots (both quantum and carbon), nanotubes, nanowires, or multiple metal-organic frameworks (MOFs). They exhibit excellent catalytic activities with low cost, high operational robustness, and a stable shelf-life. More importantly, they are amenable to modifications that can change their surface structures and increase the range of their applications. There are three main classes of nanozymes including the peroxidase-like, the oxidase-like, and the antioxidant nanozymes. Each of these classes catalyzes a specific group of reactions. With the development of nanoscience and nanotechnology, the variety of applications for nanozymes in diverse fields has expanded dramatically, with the most popular applications in biosensing. Nanozyme-based novel biosensors have been designed to detect ions, small molecules, nucleic acids, proteins, and cancer cells. The current review focuses on the catalytic mechanism of nanozymes, their application in biosensing, and the identification of future directions for the field.more » « less
-
Conventional lithium-ion batteries are unable to meet the increasing demands for high-energy storage systems, because of their limited theoretical capacity. 1 In recent years, intensive attention has been paid to enhancing battery energy storage capability to satisfy the increasing energy demand in modern society and reduce the average energy capacity cost. Among the candidates for next generation high energy storage systems, the lithium sulfur battery is especially attractive because of its high theoretical specific energy (around 2600 W h kg-1) and potential cost reduction. In addition, sulfur is a cost effective and environmentally friendly material due to its abundance and low-toxicity. 2 Despite all of these advantages, the practical application of lithium sulfur batteries to date has been hindered by a series of obstacles, including low active material loading, poor cycle life, and sluggish sulfur conversion kinetics. 3 Achieving high mass loading cathode in the traditional 2D planar thick electrode has been challenged. The high distorsion of the traditional planar thick electrodes for ion/electron transfer leads to the limited utilization of active materials and high resistance, which eventually results in restricted energy density and accelerated electrode failure. 4 Furthermore, of the electrolyte to pores in the cathode and utilization ratio of active materials. Catalysts such as MnO 2 and Co dopants were employed to accelerate the sulfur conversion reaction during the charge and discharge process. 5 However, catalysts based on transition metals suffer from poor electronic conductivity. Other catalysts such as transition metal dopants are also limited due to the increased process complexities. . In addition, the severe shuttle effects in Li-S batteries may lead to fast failures of the battery. Constructing a protection layer on the separator for limiting the transmission of soluble polysulfides is considered an effective way to eliminate the shuttle phenomenon. However, the soluble sulfides still can largely dissolve around the cathode side causing the sluggish reaction condition for sulfur conversion. 5 To mitigate the issues above, herein we demonstrate a novel sulfur electrode design strategy enabled by additive manufacturing and oxidative vapor deposition (oCVD). Specifically, the electrode is strategically designed into a hierarchal hollow structure via stereolithography technique to increase sulfur usage. The active material concentration loaded to the battery cathode is controlled precisely during 3D printing by adjusting the number of printed layers. Owing to its freedom in geometry and structure, the suggested design is expected to improve the Li ions and electron transport rate considerably, and hence, the battery power density. The printed cathode is sintered at 700 °C at N 2 atmosphere to achieve carbonization of the cathode during which intrinsic carbon defects (e.g., pentagon carbon) as catalytic defect sites are in-situ generated on the cathode. The intrinsic carbon defects equipped with adequate electronic conductivity. The sintered 3D cathode is then transferred to the oCVD chamber for depositing a thin PEDOT layer as a protection layer to restrict dissolutions of sulfur compounds in the cathode. Density functional theory calculation reveals the electronic state variance between the structures with and without defects, the structure with defects demonstrates the higher kinetic condition for sulfur conversion. To further identify the favorable reaction dynamic process, the in-situ XRD is used to characterize the transformation between soluble and insoluble polysulfides, which is the main barrier in the charge and discharge process of Li-S batteries. The results show the oCVD coated 3D printed sulfur cathode exhibits a much higher kinetic process for sulfur conversion, which benefits from the highly tailored hierarchal hollow structure and the defects engineering on the cathode. Further, the oCVD coated 3D printed sulfur cathode also demonstrates higher stability during long cycling enabled by the oCVD PEDOT protection layer, which is verified by an absorption energy calculation of polysulfides at PEDOT. Such modeling and analysis help to elucidate the fundamental mechanisms that govern cathode performance and degradation in Li-S batteries. The current study also provides design strategies for the sulfur cathode as well as selection approaches to novel battery systems. References: Bhargav, A., (2020). Lithium-Sulfur Batteries: Attaining the Critical Metrics. Joule 4 , 285-291. Chung, S.-H., (2018). Progress on the Critical Parameters for Lithium–Sulfur Batteries to be Practically Viable. Advanced Functional Materials 28 , 1801188. Peng, H.-J.,(2017). Review on High-Loading and High-Energy Lithium–Sulfur Batteries. Advanced Energy Materials 7 , 1700260. Chu, T., (2021). 3D printing‐enabled advanced electrode architecture design. Carbon Energy 3 , 424-439. Shi, Z., (2021). Defect Engineering for Expediting Li–S Chemistry: Strategies, Mechanisms, and Perspectives. Advanced Energy Materials 11 . Figure 1more » « less
-
Exciting progress has been made in the area of solar fuel generation by CO 2 reduction. New photocatalytic materials containing well-defined surface catalytic sites have emerged in recent years, including heterogenized molecular catalysts and single atom catalysts. This Feature Article summarizes our recent research in this area, together with brief discussions of relevant literature. In our effort to obtain heterogenized molecular catalysts, a diimine-tricarbonyl Re( i ) complex and a tetraaza macrocyclic Co( iii ) compound were covalently attached to different surfaces, and the effects of ligand derivatization and surface characteristics on their structures and photocatalytic activities were investigated. Single atom catalysts combine the advantages of homogeneous and heterogeneous catalysis. A single-site cobalt catalyst was prepared on graphitic carbon nitride, which demonstrated excellent activity in selective CO 2 reduction under visible-light irradiation. Doping carbon nitride with carbon was found to have profound effects on the structure and activity of the single-site cobalt catalyst. Our research achievements are presented to emphasize how spectroscopic techniques, including infrared, UV-visible, electron paramagnetic resonance, and X-ray absorption spectroscopies, could be combined with catalyst synthesis and computation modeling to understand the structures and properties of well-defined surface catalytic sites at the molecular level. This article also highlights challenges and opportunities in the broad context of solar CO 2 reduction.more » « less
-
Abstract Metal–organic frameworks (MOFs) with Lewis acid catalytic sites, such as zirconium‐based MOFs (Zr‐MOFs), comprise a growing class of phosphatase‐like nanozymes that can degrade toxic organophosphate pesticides and nerve agents. Rationally engineering and shaping MOFs from as‐synthesized powders into hierarchically porous monoliths is essential for their use in emerging applications, such as filters for air and water purification and personal protection gear. However, several challenges still limit the production of practical MOF composites, including the need for sophisticated reaction conditions, low MOF catalyst loadings in the resulting composites, and poor accessibility to MOF‐based active sites. To overcome these limitations, a rapid synthesis method is developed to introduce Zr‐MOF nanozyme coating into cellulose nanofibers, resulting in the formation of processable monolithic aerogel composites with high MOF loadings. These composites contain Zr‐MOF nanozymes embedded in the structure, and hierarchical macro‐micro porosity enables excellent accessibility to catalytic active sites. This multifaceted rational design strategy, including the selection of a MOF with many catalytic sites, fine‐tuning the coating morphology, and the fabrication of a hierarchically structured monolithic aerogel, renders synergistic effects toward the efficient continuous hydrolytic detoxification of organophosphorus‐based nerve agent simulants and pesticides from contaminated water.