skip to main content


Title: A lack of ecological diversity in forest nurseries limits the achievement of tree-planting objectives in response to global change
Abstract

Tree planting is increasingly being adopted as a strategy to address global change, including mitigation, adaptation, and restoration. Although reforestation has long been central to forest management, the desired outcomes of traditional and emerging tree-planting strategies face barriers linked to a lack of ecological diversity in forest nurseries. In the present article, we outline how insufficient diversity in nursery seedlings among species, genotypes, and stock types has impeded and will continue to hinder the implementation of diverse ecological or climate-suitable planting targets, now and into the future. To support this, we demonstrate disparities in seedling diversity among nursery inventories, focusing on the northern United States. To overcome these challenges, we recommend avenues for improving policy and financing, informational resources and training, and research and monitoring. Absent these advances, current seedling production and practices will fall short of ambitious tree-planting goals proposed for forest restoration and global change mitigation and adaptation.

 
more » « less
NSF-PAR ID:
10436518
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
BioScience
Volume:
73
Issue:
8
ISSN:
0006-3568
Page Range / eLocation ID:
p. 575-586
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coastal degradation has spurred active restoration of mangrove ecosystems, from local initiatives to global commitments to increase mangrove forest area by 20% over the next decade. Mangrove restoration projects typically have multiple objectives, including carbon storage, coastal resilience, and fisheries recovery. How planting seedlings, the most common form of active restoration, can promote recovery of mangrove ecosystem functions remains an urgent research need. We quantified multiple ecosystem outcomes of Guyana's national mangrove restoration program, approximately a decade after seedling planting, and compared restoration outcomes with conditions in intact and degraded mangrove forests. Multivariate analyses indicate that intact and restored sites' environmental conditions were similar to each other but different from degraded sites. Aboveground biomass in restored sites (103 Mg ha−1) was 13 and 99% greater than intact (89.4 Mg ha−1) and degraded (0.12 Mg ha−1) sites, respectively. Active restoration successfully increased seedling abundance of both planted and unplanted species, with similar abundance between intact and restored sites. In contrast, fish communities in restored sites remained similar to degraded sites. Restored sites were dominated by a single algivorous fish species, with lower species diversity and commercially valuable fisheries than intact sites. Our results demonstrate that active restoration is a viable option to restore mangrove forest tree biomass and tree species composition in this region. However, even under a best‐case scenario for mangrove forest restoration, fisheries did not recover during our study's timespan. Long‐term monitoring and controlled experiments will be essential to further understand restoration outcomes for multiple ecosystem services in mangrove forests.

     
    more » « less
  2. Abstract

    Ecological restoration is beneficial to ecological communities in this era of large‐scale landscape change and ecological disruption. However, restoration outcomes are notoriously variable, which makes fine‐scale decision‐making challenging. This is true for restoration efforts that follow large fires, which are increasingly common as the climate changes.

    Post‐fire restoration efforts, like tree planting and seeding have shown mixed success, though the causes of the variation in restoration outcomes remain unclear. Abiotic factors such as elevation and fire severity, as well as biotic factors, such as residual canopy cover and abundance of competitive understorey grasses, can vary across a burned area and may all influence the success of restoration efforts to re‐establish trees following forest fires.

    We examined the effect of these factors on the early seedling establishment of a tree species—māmane (Sophora chrysophylla)—in a subtropical montane woodland in Hawaiʻi. Following a human‐caused wildfire, we sowed seeds of māmane as part of a restoration effort. We co‐designed a project to examine māmane seedling establishment.

    We found that elevation was of overriding importance, structuring total levels of plant establishment, with fewer seedlings establishing at higher elevations. Residual canopy cover was positively correlated with seedling establishment, while cover by invasive, competitive understorey grasses very weakly positively correlated with increased seedling establishment.

    Our results point to specific factors structuring plant establishment following a large fire and suggest additional targeted restoration actions within this subtropical system. For example, if greater native woody recruitment is a management goal, then actions could include targeted seed placement at lower elevations where establishment is more likely, increased seeding densities at high elevation where recruitment rates are lower, and/or invasive grass removal prior to seeding. Such actions may result in faster native ecosystem recovery, which is a goal of local land managers.

     
    more » « less
  3. Abstract

    Species distribution models predict shifts in forest habitat in response to warming temperatures associated with climate change, yet tree migration rates lag climate change, leading to misalignment of current species assemblages with future climate conditions. Forest adaptation strategies have been proposed to deliberately adjust species composition by planting climate‐suitable species. Practical evaluations of adaptation plantings are limited, especially in the context of ecological memory or extreme climate events.

    In this study, we examined the 3‐year survival and growth response of future climate‐adapted seedling transplants within operational‐scale silvicultural trials across temperate forests in the northeastern US. Nine species were selected for evaluation based on projected future importance under climate change and potential functional redundancy with species currently found in these ecosystems. We investigated how adaptation planting type (‘population enrichment’ vs. ‘assisted range expansion’) and local site conditions reinforce interference interactions with existing vegetation at filtering adaptation strategies focused on transitioning forest composition.

    Our results show the performance of seedling transplants is based on species (e.g. functional attributes and size), the strength of local competition (e.g. ecological memory) and adaptation planting type, a proxy for source distance. These findings were consistent across regional forests but modified by site‐specific conditions such as browse pressure and extreme climate events, namely drought and spring frost events.

    Synthesis and applications. Our results highlight that managing forests for shifts in future composition represents a promising adaptation strategy for incorporating new species and functional traits into contemporary forests. Yet, important barriers remain for the establishment of future climate‐adapted forests that will most likely require management intervention. Nonetheless, the broader applicability of our findings demonstrates the potential for adaptation plantings to serve as strategic source nodes for the establishment of future climate‐adapted species across functionally connected landscapes.

     
    more » « less
  4. Abstract

    Applied nucleation, mostly based upon planting tree islands, has been proposed as a cost‐effective strategy to meet ambitious global forest and landscape restoration targets.

    We review results from a 15‐year study, replicated at 15 sites in southern Costa Rica, that compares applied nucleation to natural regeneration and mixed‐species tree plantations as strategies to restore tropical forest. We have collected data on planted tree survival and growth, woody vegetation recruitment and structure, seed rain, litterfall, epiphytes, birds, bats and leaf litter arthropods.

    Our results indicate that applied nucleation and plantation restoration strategies are similarly effective in enhancing the recovery of most floral and faunal groups, vegetation structure and ecosystem functions, as compared to natural regeneration.

    Seed dispersal and woody recruitment are higher in applied nucleation and plantation than natural regeneration treatments; canopy cover has increased substantially in both natural regeneration and applied nucleation treatments; and mortality of planted N‐fixing tree species has increased in recent years. These trends have led to rapid changes in vegetation composition and structure and nutrient cycling.

    The applied nucleation strategy is cheaper than mixed‐species tree plantations, but there may be social obstacles to implementing this technique in agricultural landscapes, such as perceptions that the land is not being used productively.

    Applied nucleation is likely to be most effective in cases where: planted vegetation nuclei enhance seed dispersal and seedling establishment of other species; the spread of nuclei is not strongly inhibited by abiotic or biotic factors; and the approach is compatible with restoration goals and landowner preferences.

    Synthesis and applications. Results from our 15‐year, multi‐site study show that applied nucleation can be a cost‐effective strategy for facilitating tropical forest regeneration that holds promise for helping to meet large‐scale international forest restoration commitments.

     
    more » « less
  5. Abstract

    The complex effects of global environmental changes on ecosystems result from the interaction of multiple stressors, their direct impacts on species and their indirect impacts on species interactions. Air pollution (and resulting depletion of soil base cations) and biotic invasion (e.g. beech bark disease [BBD] complex) are two stressors that are affecting the foundational tree species of northern hardwood forests, sugar maple and American beech, in northeastern North America.

    At the Hubbard Brook Experimental Forest in New Hampshire, a watershed‐scale calcium (Ca) addition in 1999 restored soil Ca that had been lost as a result of acid deposition in a maple‐beech forest that was severely affected by BBD beginning in the 1970s. We present historic data from the reference watershed for BBD progression, 20 years of comparative forest data from the treated and reference watersheds, and tree demographic rates for the most recent decade. We hypothesized that mitigation of soil acidification on the treated watershed in the presence of BBD would favour improved performance of sugar maple, a species that is particularly sensitive to base cation depletion.

    We observed significant responses of seed production, seedling bank composition, sapling survival and recruitment, and tree mortality and growth to the restoration of soil Ca, indicating that acid rain depletion of soil base cations has influenced demographic rates of maple and beech. Overall, the reduced performance of sugar maple on acidified soils may indirectly favour the persistence of diseased beech trees and a greater abundance of beech vegetative sprouts, effectively promoting the chronic presence of severe BBD in the population.

    Synthesis. The shifting conditions created by global change have altered long‐term demographic rates and may thereby impact competitive interactions in the current centre of these species ranges and have more profound implications for species persistence and migration potential than previously anticipated.

     
    more » « less